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Abstract

Imitation learning (IL) is a machine learning tech-
nique that involves learning from examples pro-
vided by an expert. IL algorithms can solve the
sequential decision-making tasks but their per-
formance usually suffer when the amount of ex-
pert data is limited. To address this challenge,
a new data-centric framework called (offline) IL
with supplementary data has emerged, which ad-
ditionally utilizes an imperfect dataset inexpen-
sively collected from sub-optimal policies. How-
ever, the supplementary data may contain out-
of-expert-distribution samples, making it tricky
to utilize the supplementary data to improve per-
formance. In this paper, we focus on a classic
offline IL algorithm called behavioral cloning
(BC) and its variants, studying the imitation gap
bounds in the context of IL with supplementary
data. Our theoretical results show that a naive
method, which applies BC on the union of expert
and supplementary data, has a non-vanishing im-
itation error. As a result, its performance may
be worse than BC which relies solely on the ex-
pert data. To address this issue, we propose an
importance-sampling-based approach for select-
ing in-expert-distribution samples from the sup-
plementary dataset. The proposed method theo-
retically eliminates the gap of the naive method.
Empirical studies demonstrate that our method
can perform better than prior state-of-the-art meth-
ods on tasks including locomotion control, Atari
games, and object recognition.
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1. Introduction
Imitation learning (IL) is an essential technique within the
field of artificial intelligence, allowing machines to learn
and enhance their behavior by imitating expert demonstra-
tions. IL algorithms have demonstrated significant success
in training high-quality policies, as highlighted in (Argall
et al., 2009; Osa et al., 2018). Among the IL approaches,
behavioral cloning (BC) (Pomerleau, 1991) stands out as a
popular method that achieves expert imitation through su-
pervised learning. BC leverages state-action pairs extracted
from trajectory data within the dataset, employing them as
training samples to learn a mapping from states to actions.
Consequently, IL expands upon the traditional supervised
learning framework, enabling the acquisition of sequential
decision-making capabilities.

The quantity of expert trajectories plays a crucial role in
achieving satisfactory performance. Previous studies have
shown that BC works well when the dataset contains a
large number of expert-level trajectories (Spencer et al.,
2021). However, the compounding errors issue (Ross &
Bagnell, 2010) renders any offline IL algorithm, including
BC, ineffective when the number of expert trajectories is
small (Rajaraman et al., 2020; Xu et al., 2021). One naive
solution to this problem is to collect more trajectories from
the expert, but this approach is costly and impractical in
certain domains, such as robotics and healthcare.
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Figure 1. Compared with the standard IL framework (shown in
cyan), the supplementary data helps address the expert data
scarcity issue, and the data selection technique helps address the
distribution shift issue in model training.

To overcome the challenge of scarce expert data, we focus
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on the offline setting (i.e., no online interaction) and adopt
the IL with supplementary data framework, which has been
recently proposed in (Kim et al., 2022b; Xu et al., 2022a).
Under this framework, the learner can leverage an additional
dataset, which can be cheaply obtained by executing sub-
optimal policies, to supplement the expert dataset. Please
refer to Figure 1 for illustration. However, the supplemen-
tary dataset introduces a distribution shift issue due to the
presence of out-of-expert-distribution trajectories1. The dis-
tribution shift issue may hamper the model’s performance
in utilizing the supplementary data, as we will argue later.

We realize that a few empirical advances have been achieved
in this direction (Kim et al., 2022b;a; Xu et al., 2022a; Ma
et al., 2022). Most algorithms rely on a discriminator to
distinguish between expert-style and sub-optimal samples,
followed by optimization of a weighted BC objective to
learn a good policy. For example, DemoDICE (Kim et al.,
2022b) uses a regularized state-action distribution matching
objective to train the discriminator, while DWBC (Xu et al.,
2022a) employs a cooperative training framework for the
policy and discriminator. Despite the empirical success of
these methods in certain scenarios, there is a lack of system-
atic theoretical studies, particularly in terms of imitation gap
(or equivalently sample complexity), which may hinder deep
understanding and impede future algorithmic advances.

We aim to bridge the gap between theory and practice in the
(offline) IL with supplementary data framework by design-
ing effective algorithms and providing rigorous theoretical
guarantees. To the best of our knowledge, only (Chang
et al., 2021) provided imitation gap bounds for a model-
based adversarial imitation learning approach in a similar
problem. However, our focus is on the widely used and
simpler BC and its variants, which are model-free in nature.
Our contributions are summarized below.

• We establish theoretical bounds on the limitations of
the IL with supplementary data framework, highlight-
ing the impact of the distribution shift between expert
data and supplementary data. A quick overview is pro-
vided in Table 1. Our analysis shows that the naively
applying BC on the union of expert and supplementary
data has a non-vanishing error term in the imitation gap
bound. This means that naively using supplementary
data may result in worse performance than BC which
relies solely on the expert data.

• To address the distribution shift issue, in light of (Kim
et al., 2022b; Xu et al., 2022a), we propose a new
importance-sampling-based approach called ISW-BC.
In contrast to prior methods (Kim et al., 2022b; Xu

1This issue is separate from the intrinsic distribution shift prob-
lem that IL already faces, where the training and evaluation distri-
butions differ (Ross & Bagnell, 2010).

et al., 2022a) that use regularized weighting rules, ISW-
BC corrects the loss function in an unbiased way. We
provide the first imitation gap bound for this type of
data selection method in imitation learning, which
shows that ISW-BC eliminates the gap of the naive
method and also has a better guarantee than BC.

• We validate our theoretical results through experiments
on various tasks, including locomotion control, Atari
games, and object recognition. Our results demon-
strate that ISW-BC outperforms previous state-of-the-
art methods, confirming the effectiveness of our pro-
posed approach in addressing the distribution shift is-
sue in IL with supplementary data.

Table 1. Theoretical guarantees of three methods: (1) BC, which
relies solely on expert data, (2) NBCU, which naively utilizes sup-
plementary data without selection, and (3) ISW-BC, a new method
that employs importance sampling for data selection. NBCU suf-
fers a non-vanishing error while ISW-BC does not. The capital
notation N refers to the data size, and for the exact meaning of
symbols, please refer to the main text.

Imitation Gap

BC O( |S|H2

NE
)

NBCU Õ((1− η)(V (πE)− V (πβ)) + |S|H2

Ntot
)

ISW-BC O( |S|H2

NE+NS/µ
)

2. Related Work
We review broadly relevant studies in the main text and
provide a detailed discussion in Appendix A.

Behavioral cloning (BC) is a popular algorithm in the offline
setting, where the learner cannot interact with the environ-
ment. According to the learning theory in (Rajaraman et al.,
2020), only using an expert dataset, BC has an imitation
gap of O(|S|H2/NE), where |S| is the state space size, H
is the planning horizon, and NE is the number of expert tra-
jectories. Our work investigates the use of a supplementary
dataset to enhance the dependence on the data size.

Our theoretical study is motivated by recent empirical ad-
vances in IL with supplementary data (Kim et al., 2022b; Xu
et al., 2022a; Ma et al., 2022; Kim et al., 2022a). We have
reviewed (Kim et al., 2022b; Xu et al., 2022a) and will not
repeat their contributions again. Compared with (Kim et al.,
2022b; Xu et al., 2022a), a related setting, learning from
observation, where expert actions are missing, and only ex-
pert states are observed, is studied in (Ma et al., 2022; Kim
et al., 2022a). The importance sampling technique used in
our method for addressing distribution shift is also studied
in (semi-)supervised learning (Sugiyama et al., 2007; Cortes
et al., 2010; Liu & Tao, 2015; Fang et al., 2020). Our contri-
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bution is to validate this technique in the imitation learning
set-up, where Markovian data needs to be considered.

3. Preliminary
Markov Decision Process. In this paper, we consider the
episodic Markov decision process (MDP) framework (Put-
erman, 2014). An MDP is defined by the tuple M =
(S,A,P, r,H, ρ), where S and A are the state and action
space, respectively. H is the maximum length of a trajectory,
and ρ is the initial state distribution. The non-stationary tran-
sition function is specified by P = {P1, · · · , PH}, where
Ph(sh+1|sh, ah) determines the probability of transiting
to state sh+1 given the current state sh and action ah in
time step h, for h ∈ [H]. Here the symbol [x] means the
set of integers from 1 to x. Similarly, the reward function
r = {r1, · · · , rH} specifies the reward received at each
time step, where rh : S ×A → [0, 1] for h ∈ [H]. A policy
in an MDP is a function that maps each state to a probabil-
ity distribution over actions. We consider time-dependent
policies πh : S → ∆(A), where ∆(A) is the probability
simplex. The policy at each time step h is denoted as πh,
and we use π to denote the collection of time-dependent
policies {πh}Hh=1 when the context is clear.

We measure the quality of a policy π by the policy value
(i.e., environment-specific long-term return): V (π) =

E
[∑H

h=1 r(sh, ah) | s1 ∼ ρ; ah ∼ πh(·|sh), sh+1 ∼
Ph(·|sh, ah),∀h ∈ [H]

]
. To facilitate later analysis, we

need to introduce the state-action distribution dπh(s, a) =
P(sh = s, ah = a|π). We use the convention that dπ is the
collection of all time-dependent state-action distributions.

Imitation Learning. Imitation learning (IL) aims to learn a
policy that mimics an expert policy based on expert demon-
strations. In this paper, we assume that there exists a good
expert policy πE that generates a dataset DE consisting of
NE trajectories of length H .

DE =
{
tr = (s1, a1, s2, a2, · · · , sH , aH) ; s1 ∼ ρ,

ah ∼ πE
h (·|sh), sh+1 ∼ Ph(·|sh, ah),∀h ∈ [H]

}
.

The learner aims to imitate the expert using the expert
dataset DE. The quality of the imitation is measured by
the imitation gap, defined as E

[
V (πE)− V (π)

]
, where the

expectation is taken over the randomness of data collection.
It is worth noting that in the training phase, IL algorithms
do not have access to reward information. A good learner
should closely mimic the expert, resulting in a small imita-
tion gap. We assume that the expert policy is deterministic,
a common assumption in the literature (Rajaraman et al.,
2020; 2021a; Xu et al., 2021), and applicable to tasks such
as MuJoCo locomotion control.

Behavioral Cloning. Behavioral cloning (BC) is a com-
monly used imitation learning algorithm that aims to learn

a policy from an expert dataset DE via supervised learning.
Specifically, BC seeks to find a policy πBC that maximizes
the log-likelihood of the expert actions in the dataset:

πBC ∈ argmax
π

H∑
h=1

∑
(s,a)∈S×A

d̂Eh (s, a) log πh(a|s), (1)

where d̂Eh (s, a) is the empirical state-action distribution in
the expert dataset. Through the maximum likelihood esti-
mation (MLE), BC can make good decisions by duplicating
expert actions on visited states. However, BC may take
sub-optimal actions on non-visited states, resulting in com-
pounding errors and a large imitation gap. This issue is
significant when the expert data is limited.

4. IL with Supplementary Data
In this section, we consider the mentioned IL with supple-
mentary data framework to address the challenge of limited
availability of expert data. Following previous works (Kim
et al., 2022b; Xu et al., 2022a), we assume that a supplemen-
tary dataset DS =

{
tr = (s1, a1, s2, a2, · · · , sH , aH)} is

collected by a (sub-optimal) behavior policy πβ . A naive
approach is to perform MLE on the union of the expert and
supplementary dataset DU = DE ∪ DS:

πNBCU ∈ argmax
π

H∑
h=1

∑
(s,a)

d̂Uh (s, a) log πh(a|s), (2)

where d̂Uh (s, a) is the empirical state-action distribution in
DU. We refer to this approach as NBCU (naive BC with
the union dataset). NBCU treats these two datasets equally
and is brittle to distribution shift, as we will demonstrate
later. For theoretical analysis purposes, we give the dataset
assumption below, in which we use η ∈ [0, 1] to denote the
fraction of expert data in the union dataset.

Assumption 1. The expert dataset DE and supplementary
dataset DS are collected in the following way: each time,
we roll-out a behavior policy πβ with probability 1− η and
the expert policy with probability η. Such an experiment is
independent and identically conducted by Ntot times.

Under Assumption 1, we slightly overload our notations:
we use NE to denote the expected number of expert trajec-
tories, which is given by NE = ηNtot, and NS to denote
the expected number of supplementary trajectories, which
is given by NS = (1 − η)Ntot. Note that the conditional
sampling procedure does not change the nature of our theo-
retical insights. In practice, one may collect a fixed number
of expert and supplementary trajectories, respectively.

To establish a common ground, we begin by specifying
the policy representations. Here, we adopt tabular rep-
resentations, which assume that the parameterized func-
tions can take any possible form. Specifically, we define
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πh(a|s; θ) = ⟨ϕ(s, a), θ⟩, where ϕ(s, a) ∈ Rd is the feature
representation and θ ∈ Rd is the parameter to optimize. In
tabular representations, we use one-hot features for ϕ(s, a),
which further implies that the expert policy is realizable
and learnable within this function class. The tabular rep-
resentations are widely considered in classical IL theory
(Rajaraman et al., 2020; 2021b; Xu et al., 2022b; Shani
et al., 2022). For a discussion on general function approxi-
mation schemes, please refer to Appendix D.

Imitation Gap of BC. In order to evaluate the usefulness of
the supplementary dataset, we use BC with only the expert
dataset as a baseline. The analysis of this approach has
been done under the standard IL set-up in (Rajaraman et al.,
2020), and we transfer their results to our setting.

Theorem 1. Under Assumption 1, if we apply BC only on
the expert dataset, we have that E

[
V (πE)− V (πBC)

]
=

O( |S|H2

NE
), where the expectation is taken over the random-

ness in the dataset collection (same as other expectations).

Proofs of Theorem 1 and other theoretical results are de-
ferred to the Appendix. The proof of Theorem 1 builds on
(Rajaraman et al., 2020), with the main difference being that
the number of expert trajectories is a random variable in
our set-up. We handle this difficulty by using Lemma 3 in
the Appendix. The quadratic dependence on the planning
horizon H indicates the compounding errors issue of BC. If
the expert data is limited, BC may perform poorly.

Imitation Gap of NBCU. Guarantees of naively using the
supplementary data are presented below.

Theorem 2. Under Assumption 1, if we apply BC on the
union dataset, we have E

[
V (πE)− V (πNBCU)

]
= O((1−

η)(V (πE)− V (πβ)) + |S|H2 log(Ntot)
Ntot

).

Remark 1. In practice, the behavior policy may take non-
expert actions, making it inferior to the expert policy. There-
fore, V (πE) − V (πβ) > 0 is often the case. Even if Ntot

is large enough to make the second term negligible, there
is still a non-vanishing gap between V (πE) and V (πβ)
due to the behavior policy’s potential to collect non-expert
actions. Consequently, the recovered policy may select a
wrong action even on expert states, leading to sub-optimal
performance of NBCU. Moreover, a previous work (Xu et al.,
2021) has shown that

V (πE)− V (πβ) = O(Hεd) = O(H2επ),

where εd = maxh TV(dπ
E

h , dπ
β

h ) is the state-action
distribution total variation (TV) distance and επ =
maxh maxs TV(πE

h (·|s), πβ
h(·|s)) is the policy distribution

TV distance. Hence, we can also view Theorem 2 in the
context of state-action or policy distribution shifts.

The subsequent proposition establishes the inevitability of
the gap V (πE)− V (πβ) in the worst case.

Proposition 1. Under Assumption 1, there exists an MDP
M, an expert policy πE and a behavior policy πβ , such that
E
[
V (πE)− V (πNBCU)

]
= Ω((1− η)(V (πE)− V (πβ))).

The construction of the hard instance in Proposition 1 relies
on the following insight: NBCU considers all action labels
in the union dataset equally important and does not distin-
guish between them. Therefore, we can build an instance
where the expert π selects a good action with a one-step
reward of 1, while the behavior policy πβ chooses a bad
action with a one-step reward of 0. The noise introduced
by πβ results in incorrect learning goals, causing NBCU to
make a mistake with probability 1− η, which is the fraction
of the noise in the union dataset. By putting extra effort into
transition construction, we can obtain the expected bound
in Proposition 1.

5. Addressing Distribution Shift with
Importance Sampling

In this section, we propose a data selection approach to al-
leviate the distribution shift issue between expert data and
supplementary data. Our approach is inspired by recent
works (Kim et al., 2022b; Xu et al., 2022a), where a dis-
criminator is trained to re-weight samples, and a weighted
BC objective is used for policy optimization. Specifically,
we define the weighted BC objective as follows:

πISW-BC ∈ argmax
π

H∑
h=1

∑
(s,a)∈S×A

{
d̂Uh (s, a)

× [wh(s, a) log πh(a|s)]× I [wh(s, a) ≥ δ]

}
, (3)

where d̂Uh (s, a) is the empirical state-action distribution of
the union dataset, and wh(s, a) ∈ [0,∞) is the weight de-
cided by the discriminator. We introduce a hyper-parameter
δ ∈ [0,∞) to control the weight of samples (for theoretical
analysis). However, in practice, we usually set δ = 0.

We propose using the importance sampling technique
(Shapiro, 2003, Chapter 9) to transfer samples in the union
dataset to the expert policy distribution, which is the key
idea behind our method. This technique helps address the
failure mode of NBCU. In an ideal scenario where there
are infinite samples (i.e., the population level), d̂Uh would
equal dUh . By setting wh(s, a) = dEh (s, a)/d

U
h (s, a), we

obtain d̂Uh (s, a)wh(s, a) = dEh (s, a), and the objective (3)
enables the learning of a policy as if samples were collected
by the expert policy. However, in practice, dEh (s, a) and
dUh (s, a) are unknown, and we only have a finite number
of samples from each of these distributions. Therefore,
we must estimate the grounded importance sampling ratio
dEh (s, a)/d

U
h (s, a) from the expert data and union data.

We want to stress that estimating the probability densities
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Algorithm 1 ISW-BC

Input: Expert dataset DE and supplementary dataset DS.
1: DU ← DE ∪ DS.
2: Train a binary classifier c with positive labels for DE

and negative labels for DU.
3: Compute importance sampling ratio w by Equation (5).
4: Apply BC to learn a policy π by objective (3) with DU.

of high-dimensional distributions separately for expert and
union data and then calculating their quotient can be a chal-
lenging task. We take a different approach. Inspired by
(Goodfellow et al., 2014), we directly train a discriminator
to estimate the importance sampling ratio dEh (s, a)/d

U
h (s, a).

To this end, we introduce time-dependent parameterized dis-
criminators {ch : S × A → [0, 1]}Hh=1, each of which is
optimized according to the objective function

max
ch

∑
(s,a)∈S×A

d̂Eh (s, a) [log (ch(s, a))]

+
∑

(s,a)∈S×A

d̂Uh (s, a) [log (1− ch(s, a))] . (4)

Solving the optimization problem in (4) is equivalent to
training a binary classifier that assigns positive labels to
expert data and negative labels to union data. We can obtain
the optimal discriminator at the population level, from which
we can derive the importance sampling ratio formula:

c⋆h(s, a) =
dEh (s, a)

dEh (s, a) + dUh (s, a)
,

wh(s, a) =
c⋆h(s, a)

1− c⋆h(s, a)
. (5)

Based on the previous discussion, we present the implemen-
tation of our proposed method, named ISW-BC (importance-
sampling-weighted BC), in Algorithm 1. It is worth noting
that ISW-BC employs an unbiased weighting rule since it
directly estimates the importance sampling ratio. In con-
trast, previous approaches such as (Kim et al., 2022b; Xu
et al., 2022a) use regularized weighting rules that may fail
to recover the expert policy even with infinite samples. For
further details on the differences between our method and
previous ones, please refer to Appendix A.

5.1. Negative Result of ISW-BC with Tabular
Representations of Discriminator

We have not yet specified the representations of the discrim-
inator. One natural choice is to use tabular representations,
which correspond to linear function approximation with
one-hot features. Tabular representations have a strong rep-
resentation power since they can span all possible functions.
However, surprisingly, we show that tabular representations
can fail when considering generalization.

Proposition 2. If the discriminator uses the one-hot feature
with δ = 0, we have πISW-BC = πBC.

Proposition 2 suggests that even if we have a large num-
ber of supplementary data and use importance sampling,
ISW-BC is not guaranteed to outperform BC based on tab-
ular representations. To illustrate, suppose we have a sam-
ple (s, a) that is an expert-style sample but only appears
in the supplementary dataset, meaning that dEh (s, a) =

0, d̂Eh (s, a) = 0 and d̂Uh (s, a) > 0. Using tabular rep-
resentations, we can compute the closed-form solution
c⋆h(s, a) = d̂Eh (s, a)/(d̂

E
h (s, a) + d̂Uh (s, a)) = 0. This

implies that the importance sampling ratio wh(s, a) =
c⋆h(s, a)/(1− c⋆h(s, a)) = 0, so this good sample does not
contribute to the learning objective (3). The failure of tabu-
lar representations is due to their discrete treatment of data,
ignoring internal correlations. Consequently, although they
work well in minimizing the empirical loss, they are not
good at generalization. This kind of failure mode is also
mentioned in the GAN literature (Arora et al., 2017).

5.2. Positive Result of ISW-BC with Function
Approximation of Discriminator

In this section, we address the issue raised in the previ-
ous section by investigating ISW-BC with a specific func-
tion approximation. To avoid the limitations of tabular
representations, we consider that the discriminator is pa-
rameterized by ch(s, a; θh) =

1
1+exp(−⟨ϕh(s,a),θh⟩) , where

θh ∈ Rd is the parameter to be trained. Note that we re-
quire d < |S||A| to avoid the tabular representations. Let
g(x) = log(1 + exp(x)). Then, the optimization problem
of the discriminator becomes:

min
θh
Lh(θh) ≜

∑
(s,a)

d̂Eh (s, a)g(−⟨ϕh(s, a), θh⟩)

+
∑
(s,a)

d̂Uh (s, a)g(⟨ϕh(s, a), θh⟩). (6)

Let θ⋆ = {θ⋆1 , · · · , θ⋆H} be the optimal solution obtained
from Equation (6). With the feature vector, samples are no
longer treated independently, and the discriminator can per-
form structured estimation. To be consistent with the prior
results, the policy is still based on tabular representations.

In the context of general linear function approximation, it
is impossible to obtain a closed-form solution for c⋆. This
raises the question: what can we infer about c⋆? Our in-
tuition is as follows. We can envision the supplementary
dataset containing two types of samples: some that were
in-expert distribution, and others that were out-of-expert
distribution. We expect that wh(s, a) is large in the former
case and small in the latter case. Note that wh is monotonic
with respect to the inner product ⟨ϕh(s, a), θ⟩. Therefore,
we conclude that a larger value of ⟨ϕh(s, a), θ⟩ implies a
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more significant contribution to the learning objective (3). In
the following part, we demonstrate that the aforementioned
intuition can be achieved under mild assumptions.

Assumption 2. Let DS
h denote the set of state-action pairs

in DS in h. Define DS,1
h = {(s, a) ∈ DS

h : dπ
E

h (s) >
0, a = πE

h (s)} as the in-expert-distribution dataset in DS
h

and DS,2
h = DS

h \ DS,1
h as the out-of-expert-distribution

dataset. There exists a ground truth parameter θ̄h ∈ Rd, for
any (s, a) ∈ DE

h ∪ DS,1
h and (s′, a′) ∈ DS,2

h , it holds that
⟨θ̄h, ϕh(s, a)⟩ > 0 and ⟨θ̄h, ϕh(s

′, a′)⟩ < 0.

Readers may realize that Assumption 2 is closely re-
lated to the notion of “margin” in the classification prob-
lem. Define ∆h(θ) ≜ min(s,a)∈DE

h∪DS,1
h
⟨θ, ϕh(s, a)⟩ −

max(s′,a′)∈DS,2
h
⟨θ, ϕh(s

′, a′)⟩. From Assumption 2, we

have ∆h(θ̄h) > 0. This means that there exists a clas-
sifier that recognizes samples from both DE

h and DS,1
h as

in-expert-distribution samples and samples from DS,2
h as

out-of-expert-distribution samples. Note that such a nice
classifier is assumed to exist, which is not identical to what
is learned via Equation (6). Before further discussion, we
note that θ̄h is not unique if it exists. Without loss of gener-
ality, we define θ̄h as that can achieve the maximum margin
(among all unit vectors).

+/-

+/-

-

-
-

- -
-
-

-

-

in-distribution out-of-distribution

Figure 2. Illustration for ISW-BC.

Let us delve into the technical challenge. Although we as-
sume two modes in the supplementary dataset, the learner
is not aware of them beforehand. To gain a better under-
standing, refer to Figure 2, where the “star” corresponds to
the expert data and the “triangle” corresponds to the sup-
plementary data. The green and red parts of the triangle
represent DS,1 and DS,2, respectively. While training the
discriminator, we assign positive labels (shown in “+”) to the
expert data and negative labels (shown in “-”) to the union
data. Consequently, it becomes challenging to determine
the learned decision boundary theoretically. To address this
challenge, we develop the landscape properties, Lipschitz
continuity and quadratic growth conditions, in Lemma 1 and
Lemma 2, respectively. These terminologies are from the
optimization literature (Karimi et al., 2016; Drusvyatskiy
& Lewis, 2018). Incorporating these properties will aid in
inferring the learned decision boundary.

Lemma 1. For any θ ∈ Rd, the margin function is Lh-
Lipschitz continuous in the sense that ∆h(θ̄h)−∆h(θ) ≤
Lh

∥∥θ̄h − θ
∥∥, where Lh = ∥ϕh(s

1, a1) − ϕh(s
2, a2)∥

with (s1, a1) ∈ argmin(s,a)∈DE
h∪DS,1

h
⟨θ, ϕh(s, a)⟩ and

(s2, a2) ∈ argmax(s,a)∈DS,2
h
⟨θ, ϕh(s, a)⟩.

Lemma 2. For any h, let Ah ∈ RNtot×d be the matrix that
aggregates the feature vectors of samples in DU

h . Assume
that rank(Ah) = d, then Lh has a (one-sided) quadratic
growth condition. That is, there exists τh > 0 such that
Lh(θh) ≥ Lh(θ

⋆
h) +

τh
2

∥∥θh − θ⋆h
∥∥2 .

Using Lemma 1 and Lemma 2, we are ready to obtain the
imitation gap bound of ISW-BC.

Theorem 3. Under Assumptions 1 and 2, let µ =

max(s,h)∈S×[H] d
πE

h (s, πE
h (s))/d

πβ

h (s, πE
h (s)) < ∞, if the

feature is designed such that

√
2(Lh(θ̄h)−Lh(θ⋆

h))
τh

< ∆h(θ̄h)
Lh

holds, then we have ∆h(θ
⋆
h) > 0. Furthermore, we have

E[V (πE)− V (πISW-BC)] = O( H2|S|
NE+NS/µ

).

In order to interpret Theorem 3, it is important to note
that ∆h(θ

⋆
h) > 0 means that there exists a δ > 0 such that

wh(s, a; θ
⋆
h) > δ for (s, a) ∈ DE

h∪DS,1
h and wh(s, a; θ

⋆
h) <

δ for (s, a) ∈ DS,2
h . As a result, all samples from DE

h and
DS,1

h are assigned with large weights, which allows ISW-BC
to make use of additional samples and outperform BC.

We remark that the imitation gap bound of ISW-BC is de-
pendent on the number of expert-style state-action pairs
presented in the union of DE

h and DS,1
h . This number is rep-

resented as NE +NS/µ, where µ is a state-action coverage
parameter. It is important to mention that a similar notation
is used in the literature of offline RL, as seen in (Munos &
Szepesvári, 2008; Chen & Jiang, 2019). Additionally, ISW-
BC has the ability to eliminate the gap of NBCU, meaning
there is no non-vanishing error in Theorem 3. Moreover,
ISW-BC can perform well even when mode-2 has noisy
action labels, a scenario where NBCU may fail.

Although Theorem 3 produces desirable outcomes, it does
have some limitations. First, the theoretical analysis neces-
sitates knowledge of δ, which is typically challenging to
determine beforehand. However, our empirical findings in
Section 6 demonstrate that setting δ = 0 is effective in prac-
tice. Second, Theorem 3 mandates the use of good smooth
features to ensure the required inequality holds, thereby
avoiding the undesirable case presented in Proposition 2.
Our paper does not offer a solution for finding such feature
representations. Nevertheless, our experiments indicate that
neural networks can usually learn suitable features. We
present a simple mathematical example corresponding to
Theorem 3 in Appendix C.5. We defer more general results
of ISW-BC to future work.
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Table 2. Environment return of algorithms on 4 locomotion control tasks. Digits correspond to the mean performance over 5 random seeds
and the subscript ± indicates the standard deviation. “Avg” computes the normalized score over environments. Same as the other tables.

Ant HalfCheetah Hopper Walker Avg
Random −326 −280 −20 2 0%
Expert 5229 11115 3589 5082 100%
BC 1759±287 931±273 2468±164 1738±311 38%

Full Replay

NBCU 4932±148 10566±86 3241±276 4462±105 92%
DemoDICE 5000±124 10781±67 3394±93 4537±125 94%
DWBC 2951±155 1485±377 2567±88 1572±225 44%
ISW-BC 4933±110 10786±56 3434±38 4475±164 94%

Noisy Expert

NBCU 3259±159 5561±539 558±23 518±56 35%
DemoDICE 2523±244 6020±346 1990±90 1685±160 49%
DWBC 3270±238 5688±557 3317±59 1985±175 62%
ISW-BC 3075±268 9284±346 2624±249 2859±407 69%

6. Experiments
To validate the theoretical claims, we perform numerical
experiments. We provide a brief overview of the experiment
set-up below, and the details can be found in Appendix G
due to space constraints.

6.1. Locomotion Control

In this section, we present our experiment on locomotion
control, where we train a robot to run like a human in four
environments from the Gym MuJoCo suite (Duan et al.,
2016): Ant, Hopper, Halfcheetah, and Walker. We
adopt online SAC (Haarnoja et al., 2018) to train an agent for
each environment with 1M steps, and consider the resultant
policy as the expert. For each environment, the expert data
contains 1 trajectory collected by the expert policy. We
consider two types of supplementary datasets:

• Full Replay (small distribution shift): the supple-
mentary dataset (1 million samples) is directly sampled
from the experience replay buffer of the online SAC
agent, which is suggested by (Kim et al., 2022b). This
setting has a small distribution shift as the online agent
quickly converges to the expert policy (see Figure 5 in
the Appendix), resulting in abundant expert trajectories
in the replay buffer.

• Noisy Expert (large distribution shift): the supple-
mentary dataset consists of 10 clean expert trajectories
and 5 noisy expert trajectories where the action labels
are corrupted (i.e., replaced by random actions). This
introduces a large state-action distribution shift. For
further discussion on dataset corruption and distribu-
tion shift, please refer to Appendix D.2.

Besides our proposed methods, we also evaluate two state-
of-the-art methods in the locomotion control domain: De-

moDICE (Kim et al., 2022b) and DWBC (Xu et al., 2022a).
Please refer to Appendix G.1.1 for more experiment details.

We report the experiment results in Table 2. We observe that
BC suffers since the amount of expert data is limited. In
the full replay task, NBCU performs well due to the small
distribution shift. However, in the noisy expert task, our
results show that NBCU performs worse than BC, while
ISW-BC outperforms NBCU significantly, demonstrating
the robustness of ISW-BC to distribution shift. Note that
among all evaluated methods, only our proposed method
ISW-BC (with consistent parameters) performs well in both
settings. Prior methods such as DemoDICE and DWBC
only perform well in one of the two settings.

6.2. Atari Games

In this section, we evaluate algorithms on Atari games
(Bellemare et al., 2013), which involve video frames as
inputs and discrete controls as outputs. Furthermore, en-
vironment transitions are stochastic for these games. We
consider 5 games, namely Alien, MsPacman, Phoenix,
Qbert, and SpaceInvaders. We obtain the offline ex-
pert data and supplementary data from the replay buffer
of an online DQN agent, as released by (Agarwal et al.,
2020b). We use the expert data from the buffer with the last
index, which only contains 50k frames, to create a challeng-
ing learning setting. To augment this data, we use earlier
replay buffer data to obtain supplementary data with approx-
imately 200k frames. We consider the same baselines as in
Section 6.1. All methods build on the classical convolutional
neural networks used in DQN.

Similar to Section 6.1, we consider two types of supplemen-
tary data. The full replay setting involves supplemen-
tary data that is close to the expert data, exhibiting a small
distribution shift. The noisy expert setting has noisy
action labels, leading to a large distribution shift. Experi-
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Table 3. Environment return of algorithms on 5 Atari games.

Alien MsPacman Phoenix Qbert SpaceInvaders Avg
Random −228 307 761 164 148 0%
Expert 2443 3601 4869 10955 1783 100%
BC 1051±21 1799±27 1520±56 4769±111 472±10 32%

Full Replay

NBCU 1405±28 2089±48 2431±104 8065±109 600±13 50%
DemoDICE 1401±16 2146±52 2192±72 7820±206 558±29 48%
DWBC 122±4 1251±56 583±33 1078±50 287±6 7%
ISW-BC 1452±37 2162±36 2299±76 7848±237 613±16 50%

Noisy Expert

NBCU 944±22 1378±30 1491±55 4366±458 418±14 27%
DemoDICE 1054±38 1604±59 1448±112 5354±295 395±10 31%
DWBC 643±18 656±16 1165±87 3860±104 296±5 16%
ISW-BC 1122±28 1980±51 1618±51 5247±328 497±6 36%

ment details can be found in Appendix G.1.2. We report
the game scores in Table 3. Our observations are consistent
with those of the previous experiments. NBCU performs
well when the distribution shift is small, while only ISW-BC
is robust when the distribution shift is large.

6.3. Object Recognition

In our final experiment, we tackle an object recognition task
that involves also image inputs. This task is a special type of
imitation learning where the planning horizon is 1 and there
are no environment transitions. The reward is classification
accuracy. Please note that our main purpose here is to use
the degraded one-step tasks to verify the theoretical results.

We use a famous dataset, DomainNet (Peng et al., 2019),
which comprises 6 sub-datasets (clipart, infograph,
painting, quickdraw, real, and sketch) that have
different feature patterns and hence distribution shifts;
see Figure 3 for an illustration. Following (Hong et al.,
2022), our task is to perform 10-class object recog-
nition (bird, feather, headphones, ice cream,
teapot, tiger, whale, windmill, wine glass,
and zebra) using 80% of the images for training and 20%
for test. Each sub-dataset has roughly 2000-5000 images.

We build the classifier on the pretrained ResNet-18 (He et al.,
2016), as directly training ResNet-18 on the DomainNet
dataset failed. We then optimize a 2-hidden-layer neural
network, where inputs are from the feature representations
extracted by the pretrained and fixed ResNet-18. We create
6 sub-tasks, where one of the 6 sub-datasets is used as
the expert data while the other 5 sub-datasets are used as
the supplementary datasets. We evaluate the classification
accuracy on the expert test data. Note that there is no natural
extension of DemoDICE for this task. More details can be
found in Appendix G.1.3.

The results of our experiment are presented in Table 4. We
observe that due to the presence of distribution shift, NBCU

(a) Clipart (b) Infograph (c) Painting

(d) Quickdraw (e) Real (f) Sketch

Figure 3. Samples of tiger class from 6 sub-datasets of the Do-
mainNet (Peng et al., 2019) dataset. Infograph and quickdraw have
different patterns compared with the others.

performs even worse than BC. On the other hand, ISW-
BC can improve the performance on 5 out of 6 tasks by
re-weighting the supplementary data.

7. Conclusion
In this paper, we investigate the imitation learning with
supplementary data framework, which aims to address the
expert data scarcity issue. We provide imitation gap bounds
for three representative algorithms: BC, which relies solely
on expert data, NBCU, which utilizes supplementary data
without selection, and ISW-BC, a newly developed method
that addresses distribution shift by employing importance
sampling. Through theoretical analysis and empirical evalu-
ations, we have shown that ISW-BC outperforms the other
methods in robustness to distribution shift and effectiveness
in utilizing supplementary data.

Future work could explore how our approach can be ex-
tended to other imitation learning algorithms and how it can
be used in conjunction with other data-centric techniques
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Table 4. Test classification accuracy (%) of algorithms on 6 types of expert and supplementary data.

Clipart Infograph Painting Quickdraw Real Sketch Avg
BC 89.31±0.01 55.80±0.01 90.14±0.00 85.61±0.01 96.19±0.00 87.58±0.01 84.10

NBCU 89.16±0.02 56.32±0.02 88.29±0.01 84.78±0.03 95.31±0.00 87.57±0.00 83.57
DWBC 90.00±0.09 57.44±0.06 90.89±0.04 85.09±0.09 96.35±0.01 88.86±0.09 84.77
ISW-BC 90.86±0.00 57.52±0.01 91.78±0.01 84.97±0.01 96.56±0.01 89.63±0.06 85.22

(see e.g., (Polyzotis & Zaharia, 2021; Whang et al., 2023;
Zha et al., 2023)) for improving imitation learning perfor-
mance. Overall, our findings demonstrate the potential of
using supplementary data to enhance imitation, and we hope
this work can inspire further advances.
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A. Additional Related Work
In contrast to BC, adversarial imitation learning (AIL) methods, such as GAIL (Ho & Ermon, 2016), perform imitation
through state-action distribution matching. It has been demonstrated both empirically and theoretically that AIL methods
do not suffer from the compounding errors issue when the expert data is limited (Ho & Ermon, 2016; Ghasemipour et al.,
2019; Kostrikov et al., 2019; Xu et al., 2020). Under mild conditions, (Xu et al., 2022b) provided a horizon-free bound of
O(min{1,

√
|S|/NE}), which is much better than BC in terms of H . However, AIL methods work naturally in the online

setting (i.e., the interaction is allowed), which is not directly applicable in the offline setting that we study in this paper. We
comment that the direct application of AIL in the offline setting is not effective, as pointed in (Li et al., 2022). Although the
proposed method has a discriminator and a policy like AIL, our discriminator and policy are not designed to compete with
each other adversarially, as we have explained in detail in the main text.

Our work builds upon previous research in IL with supplementary data, specifically the algorithms DemoDICE (Kim
et al., 2022b) and DWBC (Xu et al., 2022a). These studies highlight the importance of careful data selection when using a
supplementary dataset. In this vein, our method ISW-BC re-weights samples based on importance sampling, which we show
to be theoretically sound. Notably, a significant distinction arises between ISW-BC and these two methods in terms of the
weighting rule design. While DemoDICE and DWBC employ regularized weighting rules, our method directly estimates
the importance sampling ratio. This fundamental difference can be critical as regularized weighting rules may struggle to
recover the expert policy exactly even with infinite samples. We provide further elaboration on this point below.

First, DemoDICE also uses the weighted BC objective in Equation (3). But, DemoDICE uses the weighting rule of
w̃(s, a) ∝ d⋆(s, a)/dU(s, a) (refer to the formula between Equations (19)-(20) in (Kim et al., 2022b)), where d⋆(s, a)
is computed by the expert’s state-action distribution matching objective regularized by a divergence to the union data
distribution (refer to (Kim et al., 2022b, Equations (5)-(7)))2:

d⋆ = argmin
d

DKL(d∥dE) + αDKL(d∥dU)

s.t. d(s, a) ≥ 0 ∀s, a.∑
a

d(s, a) = (1− γ)ρ(s) + γ
∑
s′,a′

P (s|s′, a′)d(s′, a′) ∀s.

where γ ∈ [0, 1) is the discount factor, α > 0 is a hyper-parameter. Due to the regularization term in the objective, it holds
that d⋆(s, a) ̸= dπ

E

(s, a), resulting in a biased weighting rule w̃(s, a).

Second, DWBC considers a different policy learning objective (refer to (Xu et al., 2022a, Equation (17))):

min
π

α
∑

(s,a)∈DE

[− log π(a|s)]−
∑

(s,a)∈DE

[
− log π(a|s) · λ

c(1− c)

]

+
∑

(s,a)∈DS

[
− log π(a|s) · 1

1− c

]
,

(7)

where α > 0, λ > 0 are hyper-parameters, and c is the output of the discriminator that is jointly trained with π (refer to (Xu
et al., 2022a, Equation (8))):

min
c

λ
∑

(s,a)∈DE

[− log c(s, a, log π(a|s))] +
∑

(s,a)∈DS

[− log(1− c(s, a, log π(a|s)))]

− λ
∑

(s,a)∈DE

[− log(1− c(s, a, log π(a|s)))] .

Since its input additionally incorporates log π, the discriminator is not guaranteed to estimate the state-action distribution.
Thus, the weighting in Equation (7) loses a connection with the importance sampling ratio.

In addition to our work, (Chang et al., 2021) have also explored the use of supplementary data in the offline setting. However,
their approach (called MILO) is based on adversarial imitation learning. Specifically, MILO learns a transition model from
the supplementary dataset and performs adversarial imitation learning within the learned model. In contrast, our proposed

2For a moment, we use the notations in (Kim et al., 2022b) and present their results under the stationary and infinite-horizon MDPs.
Same as the discussion of DWBC (Xu et al., 2022a).
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method, ISW-BC, tackles the challenge of scarce expert data by identifying and utilizing expert-style samples that are hidden

within the supplementary dataset. MILO has an imitation gap bound of O(H
√

|S|
NE

+H2|S|
√

|A|
NS/µ

) in theory. However,
MILO makes different assumptions about the data collection procedure compared with ISW-BC. Consequently, the imitation
gap bounds of MILO and ISW-BC are incomparable.

The problem considered in this paper is related to IL with a single imperfect dataset (Wu et al., 2019; Brown et al., 2019;
Tangkaratt et al., 2020; Wang et al., 2021; Sasaki & Yamashina, 2021; Liu et al., 2022). In particular, the supplementary
dataset in our set-up can also be viewed as imperfect demonstrations. However, our problem setting differs from IL with
imperfect demonstrations in two key aspects. First, in IL with imperfect demonstrations, they either pose strong assumptions
(Tangkaratt et al., 2020; Sasaki & Yamashina, 2021; Liu et al., 2022) or require auxiliary information (e.g., confidence scores
on imperfect trajectories) on the imperfect dataset (Wu et al., 2019; Brown et al., 2019). In contrast, we assume access to a
small number of expert trajectories to identify in-expert-distribution data. Second, most works (Wu et al., 2019; Brown
et al., 2019; Tangkaratt et al., 2020; Wang et al., 2021) in IL with imperfect demonstrations require online environment
interactions while we focus on the offline setting.

B. Proof of Results in Section 4
Recall the objective of BC in Equation (1):

πBC ∈ max
π

H∑
h=1

∑
(s,a)∈S×A

d̂Eh (s, a) log πh(a|s),

where d̂Eh (s, a) = nE
h (s, a)/Ntot is the empirical state-action distribution in the expert dataset, and nE

h (s, a) is the number
of expert trajectories such that their state-action pairs are equal to (s, a) in time step h. With the tabular representations, we
can obtain a closed-formed solution to the above optimization problem.

πBC
h (a|s) =

{
nE
h(s,a)

nE
h(s)

if nE
h (s) > 0

1
|A| otherwise

(8)

where nE
h (s) ≜

∑
a′ nE

h (s, a
′). Analogously, we also have a closed-form solution for NBCU in the tabular setting:

πNBCU
h (a|s) =

{
nU
h (s,a)

nU
h (s)

if nU
h (s) > 0

1
|A| otherwise

(9)

We will discuss the generalization performance of NBCU later.

In the proof, we frequently use the notation ≲ and ≳. In particular, a(n) ≲ b(n) means that there exist C, n0 > 0 such that
a(n) ≤ Cb(n) for all n ≥ n0. In our context, n usually refers to the number of trajectories. For any two distributions P and
Q over a finite set X , we define the total variation distance as

TV(P,Q) =
1

2

∑
x∈X
|P (x)−Q(x)| = ∥P −Q∥1 .

B.1. Proof of Theorem 1

When |DE| ≥ 1, by (Rajaraman et al., 2020, Theorem 4.2), we have the following imitation gap bound for BC:

V (πE)− EDE

[
V (πBC)

]
≤ 4|S|H2

9|DE| .

When |DE| = 0, we simply have that

V (πE)− EDE

[
V (πBC)

]
≤ H.

Therefore, we have the following unified bound.

V (πE)− EDE

[
V (πBC)

]
≤ |S|H2

max{|DE|, 1} ≤
2|S|H2

|DE|+ 1
.
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The last inequality follows that max{x, 1} ≥ (x + 1)/2 for any x ≥ 0. Finally, notice that |DE| follows a binomial
distribution by Assumption 1, i.e., |DE| ∼ Bin(Ntot, η). By Lemma 3, we have that E[1/(|D|E + 1)] ≤ Ntotη, so

V (πE)− E
[
V (πBC)

]
≤ E

[
2|S|H2

|DE|+ 1

]
≤ 2|S|H2

Ntotη
=

2|S|H2

NE
,

which completes the proof.

B.2. Proof of Theorem 2

For analysis, we first define the mixture state-action distribution as follows.

dmix
h (s, a) ≜ ηdπ

E

h (s, a) + (1− η)dπ
β

h (s, a),

dmix
h (s) ≜

∑
a∈A

dmix
h (s, a), ∀(s, a) ∈ S ×A, ∀h ∈ [H].

By Assumption 1, in the population level, the marginal state-action distribution of union dataset DU in time step h is exactly
dmix
h . That is, dUh (s, a) = dmix

h (s, a), ∀(s, a, h) ∈ S ×A× [H]. Then we define the mixture policy πmix induced by dmix

as follows.

πmix
h (a|s) =

{
dmix
h (s,a)

dmix
h (s)

if dmix
h (s) > 0,

1
|A| otherwise.

∀(s, a) ∈ S ×A ,∀h ∈ [H]. (10)

From the theory of Markov Decision Processes, we know that (see, e.g., (Puterman, 2014))

∀h ∈ [H],∀(s, a) ∈ S ×A, dπ
mix

h (s, a) = dmix
h (s, a).

Therefore, we can obtain that the marginal state-action distribution of union dataset DU in time step h is exactly dπ
mix

h . Then
we have the following decomposition.

E
[
V (πE)− V (πNBCU)

]
= E

[
V (πE)− V (πmix) + V (πmix)− V (πNBCU)

]
= E

[
V (πE)− V (πmix)

]
+ E

[
V (πmix)− V (πNBCU)

]
= V (πE)− V (πmix) + E

[
V (πmix)− V (πNBCU)

]
.

For V (πE)− V (πmix), we have that

V (πE)− V (πmix) =

H∑
h=1

∑
(s,a)∈S×A

(
dπ

E

h (s, a)− dπ
mix

h (s, a)
)
rh(s, a)

=

H∑
h=1

∑
(s,a)∈S×A

(
dπ

E

h (s, a)− dmix
h (s, a)

)
rh(s, a)

= (1− η)

H∑
h=1

∑
(s,a)∈S×A

(
dπ

E

h (s, a)− dπ
β

h (s, a)
)
rh(s, a)

= (1− η)
(
V (πE)− V (πβ)

)
. (11)

The last equation follows the dual formulation of policy value (see, e.g., (Puterman, 2014)), i.e., V (π) =∑H
h=1

∑
(s,a) d

π
h(s, a)rh(s, a) for any policy π. Besides, notice that E

[
V (πmix)− V (πNBCU)

]
is exactly the imita-

tion gap of BC when regarding πmix and DU as the expert policy and expert dataset, respectively. Note that πmix may be a
stochastic policy. By (Rajaraman et al., 2020, Theorem 4.4), we have the following imtiation gap bound

E
[
V (πmix)− V (πNBCU)

]
≲
|S|H2 log(Ntot)

Ntot
. (12)

Combining Equation (11) and Equation (12) yields that

E
[
V (πE)− V (πNBCU)

]
≲ (1− η)

(
V (πE)− V (πβ)

)
+
|S|H2 log(Ntot)

Ntot
.
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B.3. Proof of Proposition 1

The hard instance in Proposition 1 builds on the Standard Imitation MDP proposed in (Xu et al., 2021); see Figure 4 for
illustration. For this MDP, each state is an absorbing state, i.e., Ph(s|s, a) = 1 for any s and a. This property is mainly used
to facilitate probability calculation and does not change the nature of our analysis. Furthermore, by only taking the action
a1 (shown in green), the agent can obtain a reward of +1. Otherwise, the agent obtains a reward of 0 for the other action
a ̸= a1. The initial state distribution is a uniform distribution, i.e., ρ(s) = 1/|S| for any s ∈ S.

2 Bandit

1 · · · |S|�1 |S|

01 01 01

2

QRQ�H[SHUW�DFWLRQ%OXH�DUURZ�

*UHHQ�DUURZ�����H[SHUW�DFWLRQ

Figure 4. The Standard Imitation MDP in (Xu et al., 2021) corresponding to prove Proposition 1.

We consider that the expert policy πE always takes the action a1 (shown in green) while the behavioral policy πβ always
takes another action a2 (shown in blue). Formally, πE

h (a
1|s) = 1 and πβ

h(a
2|s) = 1 for any s ∈ S and h ∈ [H]. It is direct

to calculate that V (πE) = H and V (πβ) = 0. The supplementary dataset DS and the expert dataset DE are collected
according to Assumption 1. The mixture state-action distribution (introduced in Appendix B.2) can be calculated as for any
s ∈ S and h ∈ [H]:

dmix
h (s, a1) = ηdπ

E

h (s, a1) + (1− η)dπ
β

h (s, a1) = ηdπ
E

h (s, a1) = ηρ(s),

dmix
h (s, a2) = ηdπ

E

h (s, a2) + (1− η)dπ
β

h (s, a2) = (1− η)dπ
β

h (s, a2) = (1− η)ρ(s).

Note that in the population level, the marginal distribution of the union dataset DU in time step h is exactly dmix
h . The

mixture policy induced by dmix (introduced in Appendix B.2) can be formulated as

πmix
h (a1|s) = η, πmix

h (a2|s) = 1− η,∀s ∈ S, h ∈ [H].

Just like before, we have dπ
mix

h (s, a) = dmix
h (s, a). The policy value of πmix can be calculated as

V (πmix) =

H∑
h=1

∑
(s,a)∈S×A

dmix
h (s, a)rh(s, a) =

H∑
h=1

∑
s∈S

dmix
h (s, a1) = ηH.

Recall from Equation (9) that πNBCU can be formulated as

∀h ∈ [H], πNBCU
h (a|s) =

{
nU
h (s,a)∑

a′ nU
h (s,a′) if

∑
a′ nU

h (s, a
′) > 0

1
|A| otherwise

(13)

We can view that the BC’s policy learned on the union dataset mimics the mixture policy πmix. In the following part, we
analyze the lower bound on the imitation gap of πNBCU.

E
[
V (πE)− V (πNBCU)

]
= V (πE)− V (πmix) + E

[
V (πmix)− V (πNBCU)

]
= H − ηH + E

[
V (πmix)− V (πNBCU)

]
= (1− η)(V (πE)− V (πβ)) + E

[
V (πmix)− V (πNBCU)

]
.

Then we consider the term E
[
V (πmix)− V (πNBCU)

]
.

V (πmix)− V (πNBCU)

=

H∑
h=1

∑
(s,a)∈S×A

(
dπ

mix

h (s, a)− dπ
NBCU

h (s, a)
)
rh(s, a)

=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)



How to Improve Imitation Learning Performance with Sub-optimal Supplementary Data?

=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) > 0}

+

H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) = 0}.

We take expectation over the randomness in DU on both sides and obtain that

E
[
V (πmix)− V (πNBCU)

]
(14)

= E

 H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) > 0}


+ E

 H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) = 0}

 . (15)

For the first term in RHS, we have that

E

 H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) > 0}


=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)rh(s, a)E
[(
πmix
h (a|s)− πNBCU

h (a|s)
)
I{nU

h (s) > 0}
]

=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)rh(s, a)P
(
nU
h (s) > 0

)
E
[
πmix
h (a|s)− πNBCU

h (a|s) | nU
h (s) > 0

]
= 0.

The last equation follows the fact that πNBCU
h (a|s) is an unbiased estimation of πmix

h (a|s), so E[πmix
h (a|s)− πNBCU

h (a|s) |
nU
h (s) > 0]. For the second term in Equation (15), we have that

E

 H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) = 0}


=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)rh(s, a)E
[(
πmix
h (a|s)− πNBCU

h (a|s)
)
I{nU

h (s) = 0}
]

=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)rh(s, a)P
(
nU
h (s) = 0

)
E
[
πmix
h (a|s)− πNBCU

h (a|s) | nU
h (s) = 0

]
=

H∑
h=1

∑
(s,a)∈S×A

ρ(s)rh(s, a)P
(
nU
h (s) = 0

)(
πmix
h (a|s)− 1

|A|

)
(a)
=

H∑
h=1

∑
s∈S

ρ(s)P
(
nU
h (s) = 0

)(
η − 1

|A|

)
(b)
= H

(
η − 1

|A|

)∑
s∈S

ρ(s)P
(
nU
1 (s) = 0

)
.

In the equation (a), we use the fact that rh(s, a1) = 1 but rh(s, a) = 0 for any a ̸= a1. In the equation (b), since each state
is an absorbing state, we have that P(nU

h (s) = 0) = P(nU
1 (s) = 0) for any h ∈ [H]. We consider two cases to address RHS
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of equation (b). In the first case of η ≥ 1/|A|, we directly have that

E

 H∑
h=1

∑
(s,a)∈S×A

ρ(s)
(
πmix
h (a|s)− πNBCU

h (a|s)
)
rh(s, a)I{nU

h (s) = 0}

 ≥ 0.

By Equation (15), we have that

E
[
V (πmix)− V (πNBCU)

]
≥ 0,

which implies that

E
[
V (πE)− V (πNBCU)

]
≥ (1− η)(V (πE)− V (πβ)).

In the second case of η < 1/|A|, we have that

H

(
η − 1

|A|

)∑
s∈S

ρ(s)P
(
nU
1 (s) = 0

) (a)

≥ −
(

1

|A| − η

)
H exp

(
−Ntot

|S|

)
≥ −(1− η)H exp

(
−Ntot

|S|

)
(b)

≥ − (1− η)H

2
.

In the inequality (a), we use that∑
s∈S

ρ(s)P
(
nU
1 (s) = 0

)
=
∑
s∈S

ρ(s)(1− ρ(s))Ntot =

(
1− 1

|S|

)Ntot

≤ exp

(
−Ntot

|S|

)
.

The inequality (b) holds since we consider the range where Ntot ≥ |S| log(2). By Equation (15), we have that

E
[
V (πmix)− V (πNBCU)

]
≥ − (1− η)H

2
.

This implies that

E
[
V (πE)− V (πNBCU)

]
≥ (1− η)(V (πE)− V (πβ))− (1− η)H

2

=
(1− η)

2
(V (πE)− V (πβ)).

In both cases, we prove that E
[
V (πE)− V (πNBCU)

]
≳ (1− η)(V (πE)− V (πβ)) and thus complete the proof.

C. Proof of Results in Section 5
C.1. Proof of Proposition 2

In the tabular case, with the first-order optimality condition, we have c⋆h(s, a) = d̂Eh (s, a)/(d̂
E
h (s, a) + d̂Uh (s, a)). By

Equation (5), we have

d̂Uh (s, a)wh(s, a) = d̂Uh (s, a)×
d̂Eh (s, a)

d̂Uh (s, a)
= d̂Eh (s, a).

Hence, the learning objective (3) reduces to (1).

C.2. Proof of Lemma 1

Recall that

∆h(θ) = min
(s,a)∈DE

h∪DS,1
h

⟨θ, ϕh(s, a)⟩ − max
(s′,a′)∈DS,2

h

⟨θ, ϕh(s
′, a′)⟩.

Then we have that

∆h(θ̄h)−∆h(θ) = min
(s,a)∈DE

h∪DS,1
h

⟨θ̄h, ϕh(s, a)⟩ − max
(s′,a′)∈DS,2

h

⟨θ̄h, ϕh(s
′, a′)⟩
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− min
(s,a)∈DE

h∪DS,1
h

⟨θ, ϕh(s, a)⟩+ max
(s′,a′)∈DS,2

h

⟨θ, ϕh(s
′, a′)⟩

(a)

≤ ⟨θ̄h, ϕh(s
1, a1)⟩ − ⟨θ̄h, ϕh(s

2, a2)⟩ − ⟨θ, ϕh(s
1, a1)⟩+ ⟨θ, ϕh(s

2, a2)⟩
= ⟨θ̄h − θ, ϕh(s

1, a1)− ϕh(s
2, a2)⟩

(b)

≤
∥∥θ̄h − θ

∥∥∥∥ϕh(s
1, a1)− ϕh(s

2, a2)
∥∥ .

In inequality (a), we utilize the facts that (s1, a1) ∈ argmin(s,a)∈DE
h∪DS,1

h
⟨θh, ϕh(s, a)⟩ and

(s2, a2) ∈ argmax(s,a)∈DS,2
h
⟨θh, ϕh(s, a)⟩. Inequality (b) follows the Cauchy–Schwarz inequality. Let Lh =∥∥ϕh(s

1, a1)− ϕh(s
2, a2)

∥∥ and we finish the proof.

C.3. Proof of Lemma 2

First, by Taylor’s Theorem, there exists θ′h ∈ {θ ∈ Rd : θt = θ⋆h + t(θh − θ⋆h), ∀t ∈ [0, 1]} such that

Lh(θh) = Lh(θ
⋆
h) + ⟨∇Lh(θ

⋆
h), θh − θ⋆h⟩+

1

2

(
θh − θ⋆h

)⊤∇2Lh(θ
′
h)
(
θh − θ⋆h

)
= Lh(θ

⋆
h) +

1

2

(
θh − θ⋆h

)⊤∇2Lh(θ
′
h)
(
θh − θ⋆h

)
. (16)

The last equality follows the optimality condition that ∇Lh(θ
⋆
h) = 0. Then, our strategy is to prove that the smallest

eigenvalue of the Hessian matrix ∇2Lh(θ
′
h) is positive, i.e., λmin(∇2Lh(θ

′
h)) > 0. We first calculate the Hessian matrix

∇2Lh(θ
′
h). Given DE and DU, we define the function G : R(|DE|+|DU|) → R as

G(v) ≜
1

|DE|

|DE|∑
i=1

g(vi) +
1

|DU|

|DU|∑
j=1

g(vj),

where vi is the i-th element in the vector v ∈ R(|DE|+|DU|) and g(x) = log (1 + exp(x)) is a real-valued function. Besides,
we use Bh ∈ R(|DE|+|DU|)×d to denote the matrix whose i-th row Bh,i = −yiϕh(s

i, ai)⊤, and yi = 1 if (si, ai) ∈ DE
h ,

yi = −1 if (si, ai) /∈ DE
h . Then the objective function can be reformulated as

Lh(θh)

=
∑
(s,a)

d̂Eh (s, a) [log (1 + exp (−⟨ϕh(s, a), θh⟩))] +
∑
(s,a)

d̂Uh (s, a) [log (1 + exp (⟨ϕh(s, a), θh⟩))]

=
1

|DE|
∑

(s,a)∈DE

log (1 + exp (−⟨ϕh(s, a), θh⟩)) +
1

|DU|
∑

(s,a)∈DU

log (1 + exp (⟨ϕh(s, a), θh⟩))

= G(Bhθh).

Then we have that ∇2Lh(θh) = B⊤
h ∇2G(Bhθh)Bh, where

∇2G(Bhθh)

= diag

(
g′′((Bhθh)1)

|DE| , . . . ,
g′′((Bhθh)|DE|)

|DE| ,
g′′((Bhθh)|DE|+1)

|DE|+ |DU| , . . . ,
g′′((Bhθh)|DE|+|DU|)

|DE|+ |DU|

)
.

Here g′′(x) = σ(x)(1− σ(x)), where σ(x) = 1/(1 + exp(−x)) is the sigmoid function. The eigenvalues of∇2G(Bhθh)
are {

g′′((Bhθh)1)

|DE| , . . . ,
g′′((Bhθh)|DE|)

|DE| ,
g′′((Bhθh)|DE|+1)

|DE|+ |DU| , . . . ,
g′′((Bhθh)|DE|+|DU|)

|DE|+ |DU|

}
.

Notice that θ′h ∈ {θ ∈ Rd : θt = θ⋆h + t(θh − θ⋆h), ∀t ∈ [0, 1]}. For a matrix A, we use λmin(A) to denote the minimal
eigenvalue of A. Here we claim that the minimum of the minimal eigenvalues of∇2G(Bhθ

t) over t ∈ [0, 1] is achieved at
t = 0 or t = 1. That is,

min{λmin(∇2G(Bhθ
t)) : ∀t ∈ [0, 1]} = min{λmin(∇2G(Bhθ

0)), λmin(∇2G(Bhθ
1))}.
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We prove this claim as follows. For any t ∈ [0, 1], we use {λ1(t), . . . , λ|DE|+|DU|(t)} to denote the eigenvalues of
∇2G(Bhθ

t). For each i ∈ [|DE|+ |DU|], we consider λi(t) : [0, 1]→ R as a function of t. Specifically,

λi(t) =


g′′((Bhθ

⋆
h)i+t(Bh(θh−θ⋆

h))i)
|DE| , if i ∈ [|DE|]

g′′((Bhθ
⋆
h)i+t(Bh(θh−θ⋆

h))i)
|DE|+|DU| , otherwise.

We observe that g′′′(x) = σ(x)(1− σ(x))(1− 2σ(x)) which satisfies that ∀x ≤ 0, g′′′(x) ≥ 0, and ∀x ≥ 0, g′′′(x) ≤ 0.
Therefore, we have that the minimum of λi(t) over t ∈ [0, 1] must be achieved at t = 0 or t = 1. That is,

min
t∈[0,1]

λi(t) = min{λi(0), λi(1)}. (17)

For any t ∈ [0, 1], we define it ∈ [|DE| + |DU|] as the index of the minimal eigenvalue of ∇2G(Bhθ
t), i.e., λit(t) =

λmin(∇2G(Bhθ
t)). Then we have that

min{λmin(∇2G(Bhθ
t)) : ∀t ∈ [0, 1]} = min{λit(t) : ∀t ∈ [0, 1]}

(a)
= min{min{λit(0), λit(1)} : ∀t ∈ [0, 1]}
= min{λi0(0), λi1(1)}
(b)
= min{λmin(∇2G(Bhθ

0)), λmin(∇2G(Bhθ
1))}

Equality (a) follows (17) and equality (b) follows that λi0(0) and λi1(1) are the minimal eigenvalues of∇2G(Bhθ
0) and

∇2G(Bhθ
1), respectively.

In summary, we derive that

min{λmin(∇2G(Bhθ
t)) : ∀t ∈ [0, 1]} = min{λmin(∇2G(Bhθ

0)), λmin(∇2G(Bhθ
1))}, (18)

which proves the previous claim.

Further, we consider λmin

(
∇2Lh(θh)

)
.

λmin

(
∇2Lh(θh)

)
= inf

x∈Rd:∥x∥=1
x⊤∇2Lh(θh)x

= inf
x∈Rd:∥x∥=1

(Bhx)
⊤∇2G(Bhθh) (Bhx)

= inf
z∈Im(Bh)

z⊤∇2G(Bhθh)z

=

(
inf

z∈Im(Bh)
∥z∥
)2

λmin(∇2G(Bhθh))

≥
(

inf
z∈Im(Bh)

∥z∥
)2

min{λmin(∇2G(Bhθ
0)), λmin(∇2G(Bhθ

1))}.

Here Im(Bh) = {z ∈ Rd : z = Bhx, ∥x∥ = 1}. The last inequality follows Equation (18).

Recall we assume that rank(Ah) = d, so we have that rank(Bh) = d. Thus, Im(Bh) is a set of vectors with positive
norms, i.e., infz∈Im(Bh) ∥z∥ > 0. Besides, since g′′(x) = σ(x)(1− σ(x)) > 0, we also have that

min{λmin(∇2G(Bhθ
0)), λmin(∇2G(Bhθ

1))} > 0.

In summary, we obtain that

λmin

(
∇2Lh(θh)

)
≥
(

inf
z∈Im(Bh)

∥z∥
)2

min{λmin(∇2G(Bhθ
0)), λmin(∇2G(Bhθ

1))} > 0.

Then, with Equation (16), there exists

τh =

(
inf

z∈Im(Bh)
∥z∥
)2

min{λmin(∇2G(Bhθ
0)), λmin(∇2G(Bhθ

1))} > 0

such that

Lh(θh) ≥ Lh(θ
⋆
h) +

τh
2

∥∥θh − θ⋆h
∥∥2 ,
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which completes the proof.

C.4. Proof of Theorem 3

First, invoking Lemma 1 with θ = θ⋆h yields that

∆h(θ
⋆
h) ≥ ∆h(θ̄h)− Lh

∥∥θ̄h − θ⋆h
∥∥ .

Here Lh = ∥ϕh(s, a)− ϕh(s
′, a′)∥ with (s, a) ∈ argmin(s,a)∈DE

h∪DS,1
h
⟨θ⋆h, ϕh(s, a)⟩ and

(s′, a′) ∈ argmax(s,a)∈DS,2
h
⟨θ⋆h, ϕh(s, a)⟩. Then, by Lemma 2, there exists τh > 0 such that

Lh(θh) ≥ Lh(θ
⋆
h) +

τh
2

∥∥θh − θ⋆h
∥∥2 .

This directly implies an upper bound of the distance between θh and θ⋆h.

∥∥θh − θ⋆h
∥∥ ≤

√
2
(
Lh(θ̄h)− Lh(θ⋆h)

)
τh

.

If the feature is designed such that

√
2(Lh(θ̄h)−Lh(θ⋆

h))
τh

< ∆h(θ̄h)
Lh

holds, we further have that
∥∥θh − θ⋆h

∥∥ < ∆h(θ̄h)/Lh.

Then we get that

∆h(θ
⋆
h) ≥ ∆h(θ̄h)− Lh

∥∥θ̄h − θ⋆h
∥∥ > 0,

which completes the proof of the first statement.

Then we proceed to prove the imitation gap bound. We first identify the property of πISW-BC. Recall the objective of
WBCU.

πISW-BC ∈ argmax
π

H∑
h=1

∑
(s,a)∈S×A

{
d̂Uh (s, a)× [wh(s, a) log πh(a|s)]× I [wh(s, a) ≥ δ]

}
.

For any state s with
∑

a∈A d̂Uh (s, a)wh(s, a)I [wh(s, a) ≥ δ] > 0, with the first-order optimality condition, we have

πISW-BC
h (a|s) = d̂Uh (s, a)wh(s, a)I [wh(s, a) ≥ δ]∑

a∈A d̂Uh (s, a)wh(s, a)I [wh(s, a) ≥ δ]
.

For an expert state s with dπ
E

h (s) > 0, if (s, πE
h (s)) ∈ DE

h ∪ DS,1
h , we have that

⟨θ⋆h, ϕh(s, π
E
h (s))⟩ > ⟨θ⋆h, ϕh(s, a)⟩, ∀(s, a) ∈ DS,2

h .

This is due to the first statement that ∆h(θ
⋆
h) > 0 in this theorem. Recall that

ch(s, a; θ
⋆
h) =

1

1 + exp(−⟨ϕh(s, a), θ⋆h⟩)
and wh(s, a) =

ch(s, a; θ
⋆
h)

1− ch(s, a; θ⋆h)
.

We can further obtain that wh(s, π
E
h (s)) > wh(s, a) for any (s, a) ∈ DS,2

h . This implies that we can find a δ such that
I
[
wh(s, π

E
h (s)) ≥ δ

]
= 1 for any (s, πE

h (s)) ∈ DE
h ∪ DS,1

h and I [wh(s, a) ≥ δ] = 0 for any (s, a) ∈ DS,2
h . Based on the

above analytical form of πISW-BC, we have that πISW-BC(πE
h (s)|s) = 1 for any (s, πE

h (s)) ∈ DE
h ∪ DS,1

h . In summary, for
any state s with (s, πE

h (s)) ∈ DE
h ∪ DS,1

h , we have that πISW-BC
h (πE

h (s)|s) = 1.

With the above property of πISW-BC, we proceed to analyze the policy value gap. According to (Rajaraman et al., 2020,
Lemma 4.3), we have

V (πE)− V (πISW-BC) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πISW-BC

h (·|s)
)]

.

Since πE is assumed to be deterministic, we have

V (πE)− V (πISW-BC) ≤ H

H∑
h=1

E
s∼dπE

h (·)

[
Ea∼πISW-BC

h (·|s)
[
I
{
a ̸= πE

h (s)
}]]
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(a)

≤ H

H∑
h=1

E
s∼dπE

h (·)

[
I
{
(s, πE

h (s)) /∈ DE
h ∪ DS,1

h

}]
(b)
= H

H∑
h=1

E
s∼dπE

h (·)

[
I
{
(s, πE

h (s)) /∈ DU
h

} ]
.

Inequality (a) follows the property of πISW-BC derived above. In particular, for any state s with (s, πE
h (s)) ∈ DE

h ∪ DS,1
h ,

we have that πISW-BC
h (πE

h (s)|s) = 1. Equation (b) holds due to the Assumption 2. In particular, for an expert state s that
dπ

E

h (s) > 0, the events of (s, πE
h (s)) /∈ DE

h ∪ DS,1
h and (s, πE

h (s)) /∈ DU
h are equivalent.

Moreover, we take the expectation over DU on both sides and obtain that

E
[
V (πE)− V (πISW-BC)

]
≤ H

H∑
h=1

E
s∼dπE

h (·)

[
P
(
(s, πE

h (s)) /∈ DU
h

) ]

= H

H∑
h=1

∑
s∈S

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DU
h

)
.

According to Assumption 1, we have that

dUh (s, π
E
h (s)) = ηdπ

E

h (s, πE
h (s)) + (1− η)dπ

β

h (s, πE
h (s))

(a)

≥ ηdπ
E

h (s, πE
h (s)) +

(1− η)

µ
dπ

E

h (s, πE
h (s))

=

(
η +

(1− η)

µ

)
dπ

E

h (s, πE
h (s)).

Inequality (a) follows the definition of µ in Theorem 3: for any (s, h) ∈ S×[H], we have dπ
E

h (s, πE
h (s))/d

πβ

h (s, πE
h (s)) ≤ µ.

Then we obtain that

E
[
V (πE)− V (πISW-BC)

]
≤ H

H∑
h=1

∑
s∈S

dπ
E

h (s)(1− dUh (s, π
E
h (s)))

Ntot

≤
(

1

η + (1− η)/µ

)
H

H∑
h=1

∑
s∈S

dUh (s, π
E
h (s))P

(
(s, πE

h (s)) /∈ DU
h

)
.

For each (s, h) ∈ S × [H], we observe that

dUh (s, π
E
h (s))P

(
(s, πE

h (s)) /∈ DU
h

)
= dUh (s, π

E
h (s))

(
1− dUh (s, π

E
h (s))

)Ntot ≤ 4

9Ntot
.

Here the last inequality follows Lemma 5. Consequently, we can derive that
H∑

h=1

∑
s∈S

dUh (s, π
E
h (s))P

(
(s, πE

h (s)) /∈ DU
h

)
≤ 4H|S|

9Ntot
,

which further implies that

E
[
V (πE)− V (πISW-BC)

]
≤
(

1

η + (1− η)/µ

)
4H2|S|
9Ntot

=
4H2|S|

9 (NE +NS/µ)
.

We complete the proof.

C.5. An Example Corresponding to Theorem 3

In this section, we provide an example that illustrates the required feature design in Theorem 3 can hold.

Example 1. To illustrate Theorem 3, we consider an example in the feature space R2. In particular, for time step h ∈ [H],
we have the expert dataset and supplementary dataset as follows.

DE
h =

{(
s(1), a(1)

)
,
(
s(4), a(4)

)}
, DS

h =
{(

s(2), a(2)
)
,
(
s(3), a(3)

)}
,
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DS,1
h =

{(
s(2), a(2)

)}
, DS,2

h =
{(

s(3), a(3)
)}

.

The corresponding features are

ϕh

(
s(1), a(1)

)
= (0, 1)⊤, ϕh

(
s(2), a(2)

)
=

(
−1

2
, 0

)⊤

,

ϕh

(
s(3), a(3)

)
=

(
0,−1

2

)⊤

, ϕh

(
s(4), a(4)

)
= (−1, 0)⊤.

Notice that the set of expert-style samples is DE
h ∪ DS,1

h = {(s(1), a(1)), (s(2), a(2)), (s(4), a(4))} and the set of non-expert-
style samples is DS,2

h = {(s(3), a(3))}. It is direct to calculate that the ground-truth parameter that achieves the maximum
margin among unit vectors is θh = (−

√
2/2,
√
2/2)⊤ and the maximum margin is ∆h(θh) =

√
2/2. According to

Equation (6), for θh = (θh,1, θh,2)
⊤, the optimization objective is

Lh(θh)

=
∑
(s,a)

d̂Eh (s, a) [log (1 + exp (−⟨ϕh(s, a), θh⟩))] +
∑
(s,a)

d̂Uh (s, a) [log (1 + exp (⟨ϕh(s, a), θh⟩))]

=
1

2
(log (1 + exp (−θh,2)) + log (1 + exp (θh,1)))

+
1

4

(
log (1 + exp (θh,2)) + log

(
1 + exp

(
−1

2
θh,1

)))
+

1

4

(
log

(
1 + exp

(
−1

2
θh,2

))
+ log (1 + exp (−θh,1))

)
.

We apply CVXPY (Diamond & Boyd, 2016) to calculate the optimal solution θ⋆h ≈ (−0.310, 0.993)⊤ and the objective
values Lh(θ

⋆
h) ≈ 1.287, Lh(θh) ≈ 1.309. Furthermore, we calculate the Lipschitz coefficient Lh appears in Lemma 1.

(s(2), a(2)) = argmin
(s,a)∈DE

h∪DS,1
h

⟨θ⋆h, ϕh(s, a)⟩, (s(3), a(3)) ∈ argmax
(s,a)∈DS,2

h

⟨θ⋆h, ϕh(s, a)⟩,

Lh =
∥∥∥ϕh(s

(2), a(2))− ϕh(s
(3), a(3))

∥∥∥ =

√
2

2
.

Then we calculate the parameter of strong convexity τh appears in Lemma 2. Based on the proof of Lemma 2, our strategy is
to calculate the minimal eigenvalue of the Hessian matrix.

First, for θh = (θh,1, θh,2)
⊤, the gradient of Lh(θh) is

∇Lh(θh)

= −
∑

(s,a)∈S×A

d̂Eh (s, a)σ(−⟨ϕh(s, a), θh⟩) +
∑

(s,a)∈S×A

d̂Uh (s, a)σ (⟨ϕh(s, a), θh⟩)

=

(
1

2
σ(θh,1)−

1

4
σ(−θh,1)−

1

8
σ(−1

2
θh,1),

1

4
σ (θh,2)−

1

2
σ (−θh,2)−

1

8
σ(−1

2
θh,2)

)⊤

.

Here σ(x) = 1/(1 + exp(−x)) for x ∈ R is the sigmoid function. Then the Hessian matrix at θh is

∇2Lh(θh) =

(
3
4f(θh,1) +

1
16f

(
1
2θh,1

)
0

0 3
4f(θh,2) +

1
16f

(
1
2θh,2

)) ,

where f(x) = σ(x)(1 − σ(x)) and f(x) = f(−x). For any t ∈ [0, 1], the eigenvalues of the Hessian matrix at
θth = θh + t(θ⋆h − θh) are

3

4
f(θth,1) +

1

16
f

(
1

2
θth,1

)
,
3

4
f(θth,2) +

1

16
f

(
1

2
θth,2

)
.

Now, we calculate the minimal eigenvalues of∇2Lh(θ
t
h). We consider the function

g(x) =
3

4
f(x) +

1

16
f

(
1

2
x

)
, ∀x ∈ [a, b].
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The gradient is

g′(x) =
3

4
σ(x)(1− σ(x))(1− 2σ(x)) +

1

32
σ

(
1

2
x

)(
1− σ

(
1

2
x

))(
1− 2σ

(
1

2
x

))
.

We observe that ∀x ≤ 0, g′(x) ≥ 0, and ∀x ≥ 0, g′(x) ≤ 0. Thus, we have that the minimum of g(x) must be achieved at
x = a or x = b. Besides, we have that g(x) = g(−x). With the above arguments, we know that the minimal eigenvalue is
g(0.993) ≈ 0.163 and τh ≈ 0.163. Then we can calculate that√

2
(
Lh(θ̄h)− Lh(θ⋆h)

)
τh

≈ 0.520,
∆h(θ̄h)

Lh
= 1.

The inequality in Theorem 3 holds.

D. Discussion
In the main text, we focus on the tabular representations for policies. Furthermore, we consider a trajectory sampling
procedure for behavior policy in collecting the supplementary dataset. We present two possible extensions in this section.

D.1. Function Approximation of Policies

Assume that the learner is access to a finite function class Π = {π = (π1, π2, . . . , πh)}, where πh : S → ∆(A) could be
any function (e.g., neural networks). For simplicity of analysis, we assume that Π is a finite class. Notice that the algorithms
considered in this paper are BC and its variants, which all take the principle of maximum likelihood estimation (MLE). The
theoretical analysis of these algorithms is based on the following inequality:

V (πE)− V (π) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πh(·|s)

)]
.

Therefore, the key is to upper bound the TV distance. Take BC as an example (i.e., π = πBC). By using the concentration
inequality in (Agarwal et al., 2020a, Theorem 21), we obtain that for any δ ∈ (0, 1), when |DE| ≥ 1, with probability at
least 1− δ over the randomness within DE,

E
s∼dπE

h (·)
[
TV2

(
πE
h (·|s), πBC

h (·|s)
)]
≤ 2

log(|Π|/δ)
|DE| . (19)

With additional efforts (by using union bound and Jensen’s inequality), we have the following result.

Theorem 4 (BC with Function Approximation). Under Assumption 1. In the general function approximation setting,
additionally assume that πE ∈ Π. If we apply BC on the expert data, we have

E
[
V (πE)− V (πBC)

]
= O

H2

√
log(|Π|HNE)

NE

 ,

where the expectation is taken over the randomness in the dataset collection.

The detailed proof is deferred to Appendix E. Compared with Theorem 1, we notice that the change in theoretical bound is
that O(|S|/NE) is replaced by O(

√
log(|Π|HNE)/NE).

NBCU can be analyzed in a similar way in the function approximation setting.

Theorem 5 (NBCU with Function Approximation). Under Assumption 1. In the general function approximation setting,
additionally assume that the realizable policy class Π is realizable, i.e., πmix ∈ Π, where πmix is defined in Equation (10).
If we apply BC on the union dataset, we have

E
[
V (πE)− V (πNBCU)

]
= O

(1− η)(V (πE)− V (πβ)) +H2

√
log(|Π|HNtot)

Ntot

 .

The proof of Theorem 5 is deferred to Appendix E. We use Theorem 4 to help prove Theorem 5.

Unfornatunetly, the analysis of ISW-BC with function approximation is much more complicated since the maximum
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likelihood estimation is performed in a weighted manner.In the following part, we make a conjecture on the theoretical
guarantee of the weighted maximum likelihood estimation. With such a conjecture, we can derive the imitation gap of
ISW-BC with general function approximation. We leave the proof of the conjecture and other proof possibilities for future
works.

Recall the objective of ISW-BC.

πISW-BC ∈ argmax
π∈Π

H∑
h=1

∑
(s,a)∈S×A

{
d̂Uh (s, a)× [wh(s, a) log πh(a|s)]× I [wh(s, a) ≥ δ]

}
,

Notice that the analysis of the discriminators is independent of the function approximation of policies. Therefore, we can
follow the analysis of the discriminators in the proof of Theorem 3. Importantly, we can derive that there exists δ such that
I
[
wh(s, π

E
h (s)) ≥ δ

]
= 1 for any (s, πE

h (s)) ∈ DE
h ∪ DS,1

h and I [wh(s, a) ≥ δ] = 0 for any ∀(s, a) ∈ DS,2
h . Then we can

obtain that
H∑

h=1

∑
(s,a)∈S×A

{
d̂Uh (s, a)× [wh(s, a) log πh(a|s)]× I [wh(s, a) ≥ δ]

}

=

H∑
h=1

∑
s∈SE

h ,a=πE
h (s)

d̂Uh (s, a)× [wh(s, a) log πh(a|s)] .

Here SEh = {s ∈ S : dπ
E

h (s) > 0}. Then we have that

πISW-BC ∈ argmax
π∈Π

H∑
h=1

∑
s∈SE

h ,a=πE
h (s)

d̂Uh (s, a)× [wh(s, a) log πh(a|s)] .

We conjecture that πISW-BC learned by the above weighted maximum likelihood holds the following theoretical guarantee.
For any δ ∈ (0, 1), with probability at least 1− δ, we have that∑

s∈SE
h

dUh (s, π
E
h (s))TV

2
(
πE
h (·|s), πISW-BC

h (·|s)
)
= O

(
log (|Π|Ntot)

Ntot

)
. (20)

This conjecture corresponds to (19) in the unweighted maximum likelihood estimation. With this conjecture, we can derive
the imitation gap of ISW-BC with function approximation.

Conjecture 1 (Imitation Gap of ISW-BC with Function Approximation). Under Assumptions 1 and 2, let µ =

max(s,h)∈S×[H] d
πE

h (s, πE
h (s))/d

πβ

h (s, πE
h (s)). In the general function approximation setting with the realizable policy

class Π, i.e., πE ∈ Π. Furthermore, assume that the feature is designed such that

√
2(Lh(θ̄h)−Lh(θ⋆

h))
τh

< ∆h(θ̄h)
Lh

holds and

the conjecture in (20) holds. Then, we have the imitation gap bound

E[V (πE)− V (πISW-BC)] = O
(
H2

√
log(|Π|HNtot)

NE +NS/µ

)
.

D.2. Supplementary Data with Corruption

In the main text, we consider the trajectory sampling procedure in Assumption 1. However, in some cases, the supplementary
data can be poisoned and corrupted by an adversary. For example, although the human expert demonstrates an optimal
trajectory, the recorder or the recording system possibly corrupts the data by accident or on purpose. Data corruption is
one of the main security threats to imitation learning methods (Liu et al., 2022). Therefore, it is valuable to investigate the
robustness of the presented algorithms in this poison setting. Supplementary data with corruption is partially investigated in
our experiments under the noisy expert setting, which we argue have a large state-action distribution shift.

Assumption 3 (Poison Setting). The supplementary dataset DS and expert dataset DE are collected in the following way:
each time, with probability η, we rollout the expert policy to collect a trajectory. With probability 1− η, we still rollout the
expert policy to collect a trajectory but with probability 1− η′, the actions along the sampled trajectory are replaced with
actions uniformly sampled from the action space. Such an experiment is independent and identically conducted by Ntot

times.
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Theorem 6 (NBCU in the Poison Setting). Under Assumption 3. In the tabular case, for any η ∈ (0, 1], we have

E
[
V (πE)− V (πNBCU)

]
= O

(1− η)(1− η′)H2

(
1− 1

|A|

)
+H2

√
|S||A|
Ntot

 ,

where the expectation is taken over the randomness in the dataset collection.

Theorem 7 (ISW-BC in the Poison Setting). Under Assumptions 2 and 3, if the feature is designed such that√
2(Lh(θ̄h)−Lh(θ⋆

h))
τh

< ∆h(θ̄h)
Lh

holds, we have the imitation gap bound

E[V (πE)− V (πISW-BC)] = O
(

H2|S|
NE +NSη′

)
.

Proofs of Theorem 6 and Theorem 7 can be found in Appendix E. Compared with the imitation gap of NBCU, there is no
non-vanishing gap due to the corrupted actions in the imitation gap of ISW-BC. This means that ISW-BC is still robust in
this setting.

E. Proof of Results in Section D
E.1. Proof of Theorem 4

According to (Rajaraman et al., 2020, Lemma 4.3), we have

V (πE)− V (πBC) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πBC

h (·|s)
)]

.

With (Agarwal et al., 2020a, Theorem 21), when |DE| ≥ 1, for any δ ∈ (0, 1), with probability at least 1 − δ over the
randomness within DE, we have that

E
s∼dπE

h (·)
[
TV2

(
πE
h (·|s), πBC

h (·|s)
)]
≤ 2

log(|Π|/δ)
|DE| .

With union bound, with probability at least 1− δ, for all h ∈ [H], it holds that

E
s∼dπE

h (·)
[
TV2

(
πE
h (·|s), πBC

h (·|s)
)]
≤ 2

log(|Π|H/δ)

|DE| ,

which implies that

V (πE)− V (πBC) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πBC

h (·|s)
)]

(a)

≤ H

H∑
h=1

√
E
s∼dπE

h (·)
[
TV2

(
πE
h (·|s), πBC

h (·|s)
)]

≤
√
2H2

√
log(|Π|H/δ)

|DE| .

Inequality (a) follows Jensen’s inequality. Taking expectation over the randomness within DE yields that

EDE

[
V (πE)− V (πBC)

]
≤ δH + (1− δ)

√
2H2

√
log(|Π|H/δ)

|DE|

(a)
=

H

2|DE| +
(
1− 1

2|DE|

)√
2H2

√
log(2|Π|H|DE|)

|DE|

≤
(√

2 + 1
)
H2

√
log(2|Π|H|DE|)

|DE|



How to Improve Imitation Learning Performance with Sub-optimal Supplementary Data?

≤ 4H2

√
log(4|Π|H|DE|)

|DE| .

Equation (a) holds due to the choice that δ = 1/(2|DE|). For |DE| = 0, we directly have that

EDE

[
V (πE)− V (πBC)

]
≤ H.

Therefore, for any |DE| ≥ 0, we have that

EDE

[
V (πE)− V (πBC)

]
≤ 4H2

√
log(4|Π|Hmax{|DE|, 1})

max{|DE|, 1} .

We consider a real-valued function f(x) = log(cx)/x for x ≥ 1, where c = 4|Π|H > 4. Its gradient function is
f ′(x) = (1− log(cx))/x2 ≤ 0 when x ≥ 1. Then we know that f(x) is decreasing as x increases. Furthermore, we have
that max{|DE|, 1} ≥ (|DE|+ 1)/2 when |DE| ≥ 0. Then we obtain

EDE

[
V (πE)− V (πBC)

]
≤ 4H2

√
log(4|Π|Hmax{|DE|, 1})

max{|DE|, 1}

≤ 4H2

√
2 log(4|Π|H(|DE|+ 1))

|DE|+ 1
.

Taking expectation over the random variable |DE| ∼ Bin(Ntot, η) yields that

E
[
V (πE)− V (πBC)

]
≤ 4H2E

[√
2 log(4|Π|H(|DE|+ 1))

|DE|+ 1

]
(a)

≤ 4H2

√
E
[
2 log(4|Π|H(|DE|+ 1))

|DE|+ 1

]
.

Inequality (a) follows Jensen’s inequality. We consider the function g(x) = −x log(x/c) for x ∈ (0, 1], where c = 4|Π|H .

g′(x) = −(log(x/c) + 1) ≥ 0, g′′(x) = − 1

x
≤ 0, ∀x ∈ (0, 1].

Thus, g(x) is a concave function. By Jensen’s inequality, we have that E[g(x)] ≤ g(E[x]). Then we can derive that

E
[
V (πE)− V (πBC)

]
≤ 4H2

√
E
[
2 log(4|Π|H(|DE|+ 1))

|DE|+ 1

]

= 4
√
2H2

√
E
[
g

(
1

|DE|+ 1

)]

≤ 4
√
2H2

√
g

(
E
[

1

|DE|+ 1

])
(a)

≤ 4
√
2H2

√
g

(
1

NE

)

≤ 4
√
2H2

√
log(4|Π|HNE)

NE
.

In inequality (a), we use the facts that g′(x) ≥ 0 and E
[
1/(|DE|+ 1)

]
≤ 1/NE from Lemma 3. We complete the proof.

E.2. Proof of Theorem 5

Despite the function approximation scheme, we can perform the same decomposition analysis as in the proof of Theorem 2.
Therefore, we can obtain that

E
[
V (πE)− V (πNBCU)

]
= (1− η)

(
V (πE)− V (πβ)

)
+ E

[
V (πmix)− V (πNBCU)

]
.
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Recall that

πNBCU ∈ max
π∈Π

H∑
h=1

∑
(s,a)∈S×A

d̂Uh (s, a) log πh(a|s).

In the proof of Theorem 2, we have shown that dUh (s, a) = dπ
mix

h (s, a), meaning that the state-action distribution of the
union dataset equals the state-action distribution of the policy πmix. Therefore, we can regard that πNBCU is obtained by
performing BC on the dataset generated by πmix. Consequently, we can apply Theorem 4 to obtain that3

E
[
V (πmix)− V (πNBCU)

]
≤ 4
√
2H2

√
log(4|Π|HNtot)

Ntot
.

Finally, we arrive at

E
[
V (πE)− V (πNBCU)

]
= (1− η)

(
V (πE)− V (πβ)

)
+ 4
√
2H2

√
log(4|Π|HNtot)

Ntot
,

which completes the proof.

E.3. Proof of Theorem 6

We first analyze the data distribution in DU. According to Assumption 3, we summarize the sampling procedure of
trajectories inDU as follows. Each time, we rollout the expert policy to collect a trajectory. Furthermore, with the probability
of (1− η)(1− η′), the actions along the sampled expert trajectory are replaced with actions uniformly sampled from the
action space. Then we put this poisoned expert trajectory intoDU. Otherwise, with the probability of 1− (1−η)(1−η′), we
directly put the original expert trajectory into DU. Therefore, we can formulate the marginal distribution of the state-action
pairs in time step h in DU. For each (s, a, h) ∈ S ×A× [H],

dUh (s, a) = (1− (1− η)(1− η′)) dπ
E

h (s, a) + (1− η)(1− η′)dπ
E

h (s)
1

|A| ,

dUh (s) =
∑
a∈A

dUh (s, a) = dπ
E

h (s).

Then we proceed to analyze the imitation gap. Similar to the proof of Theorem 2, according to (Rajaraman et al., 2020,
Lemma 4.3), we have

V (πE)− V (πNBCU) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πNBCU

h (·|s)
)]

.

Again, we introduce the definition of the policy πmix.

∀(s, a) ∈ S ×A ,∀h ∈ [H], πmix
h (a|s) =

{
dU
h (s,a)

dU
h (s)

if dUh (s) = dπ
E

h (s) > 0,
1

|A| otherwise.

In particular, if dUh (s) > 0, we have that

πmix
h (a|s) = dUh (s, a)

dUh (s)
= (1− (1− η)(1− η′))πE

h (a|s) + (1− η)(1− η′)
1

|A| .

Then we decompose the imitation gap into two parts.

V (πE)− V (πNBCU)

≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πNBCU

h (·|s)
)]

≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πmix

h (·|s)
)]

+H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πmix
h (·|s), πNBCU

h (·|s)
)]

.

3Note that Theorem 4 holds for the case where the expert policy is stochastic.
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We first analyze the first term in RHS. For certain (s, h) such dUh (s) = dπ
E

h (s) > 0, we have that

TV
(
πE
h (·|s), πmix

h (·|s)
)
=

∑
a̸=πE

h (s)

πmix
h (a|s)

=
∑

a̸=πE
h (s)

(1− (1− η)(1− η′))πE
h (a|s) + (1− η)(1− η′)

1

|A|

= (1− η)(1− η′)

(
1− 1

|A|

)
.

Therefore, we can derive that

H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πmix

h (·|s)
)]
≤ (1− η)(1− η′)H2

(
1− 1

|A|

)
.

Now we analyze the second term of

H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πmix
h (·|s), πNBCU

h (·|s)
)]

.

Recall the formula of πNBCU.

πNBCU
h (a|s) =

{
nU
h (s,a)

nU
h (s)

if nU
h (s) > 0

1
|A| otherwise

Notice that πNBCU is the maximum likelihood estimation of πmix. According to the concentration inequality of total
variation (Weissman et al., 2003), for each (s, h) ∈ S × [H], for any fixed δ ∈ (0, 1), when nU

h (s) > 0, with probability at
least 1− δ, we have

TV
(
πmix
h (·|s), πNBCU

h (·|s)
)
≤
√
|A| log(3/δ)

nU
h (s)

.

When nU
h (s) = 0, we have that

TV
(
πmix
h (·|s), πNBCU

h (·|s)
)
≤ 1 ≤

√
|A| log(3/δ).

By combining the above two inequalities, for each (s, h) ∈ S × [H], with probability at least 1− δ, we have

TV
(
πmix
h (·|s), πNBCU

h (·|s)
)
≤
√
|A| log(3/δ)

max{nU
h (s), 1}

.

Applying union bound yields that with probability at least 1− δ/2, for all (s, h) ∈ S × [H],

TV
(
πmix
h (·|s), πNBCU

h (·|s)
)
≤
√
|A| log(6|S|H/δ)

max{nU
h (s), 1}

.

Then we have that

H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πmix
h (·|s), πNBCU

h (·|s)
)]

≤ H

H∑
h=1

E
s∼dπE

h (·)

[√
|A| log(6|S|H/δ)

max{nU
h (s), 1}

]

= H
√
|A| log(6|S|H/δ)

H∑
h=1

E
s∼dπE

h (·)

[√
1

max{nU
h (s), 1}

]

= H
√
|A| log(6|S|H/δ)

H∑
h=1

∑
s∈S

√
dπ

E

h (s)

√
dπ

E

h (s)

max{nU
h (s), 1}
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≤ H
√
|A| log(6|S|H/δ)

H∑
h=1

√√√√∑
s∈S

dπ
E

h (s)

max{nU
h (s), 1}

.

Here the last inequality follows Cauchy-Swartz inequality. Notice that nU
h (s) is the number of times that the state s appears

in DU in time step h and thus follows the Binomial distribution of Bin(Ntot, d
πE

h (s)). By applying Lemma 4, for each
(s, h), with probability at least 1− δ, we have

dπ
E

h (s)

max{nU
h (s), 1}

≤ 8 log(1/δ)

Ntot
.

By union bound, with probability at least 1− δ/2, for all (s, h) ∈ S × [H],

dπ
E

h (s)

max{nU
h (s), 1}

≤ 8 log(2|S|H/δ)

Ntot
.

Then, with probability at least 1− δ, we have

H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πmix
h (·|s), πNBCU

h (·|s)
)]
≤ H2

√
8|S||A| log2(6|S|H/δ)

Ntot
.

Finally, we upper bound the imitation gap. With probability at least 1− δ, we have

V (πE)− V (πNBCU) ≤ (1− η)(1− η′)

(
1− 1

|A|

)
+H2

√
8|S||A| log2(6|S|H/δ)

Ntot
.

We set δ = H/Ntot and obtain that

E
[
V (πE)− V (πNBCU)

]
≤ δH + (1− δ)

(1− η)(1− η′)

(
1− 1

|A|

)
+H2

√
8|S||A| log2(6|S|H/δ)

Ntot


≤ H2

Ntot
+ (1− η)(1− η′)

(
1− 1

|A|

)
+H2

√
8|S||A| log2(6|A|Ntot)

Ntot

≤ (1− η)(1− η′)

(
1− 1

|A|

)
+ 4H2

√
2|S||A| log2(6|A|Ntot)

Ntot
.

On the other hand, we directly have E[V (πE)− V (πNBCU)] ≤ H . We complete the proof.

E.4. Proof of Theorem 7

In the poison setting, we can conduct the same analysis as in the proof of Theorem 3 and demonstrate that
πISW-BC(πE

h (s)|s) = 1, ∀(s, πE
h (s)) ∈ DE

h ∪ DS,1
h , where DE

h is the set of state-action pairs in DE in time step h

and DS,1
h = {(s, a) ∈ DS

h : dπ
E

h (s) > 0, a = πE
h (s)}. According to (Rajaraman et al., 2020, Lemma 4.3), we have

V (πE)− V (πISW-BC) ≤ H

H∑
h=1

E
s∼dπE

h (·)
[
TV

(
πE
h (·|s), πISW-BC

h (·|s)
)]

.

Since the expert policy is assumed to be deterministic, we can obtain

V (πE)− V (πISW-BC) ≤ H

H∑
h=1

E
s∼dπE

h (·)

[
Ea∼πISW-BC

h (·|s)
[
I
{
a ̸= πE

h (s)
}]]

≤ H

H∑
h=1

E
s∼dπE

h (·)

[
I
{
(s, πE

h (s)) /∈ DE
h ∪ DS,1

h

}]
.
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Let DS,clean denote the non-corrupted dataset in DS. Then we can obtain that

V (πE)− V (πISW-BC)
(a)

≤ H

H∑
h=1

E
s∼dπE

h (·)

[
I
{
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

}]

= H

H∑
h=1

∑
s∈S

dπ
E

h (s)I
{
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

}
,

where DS,clean
h denotes the set of state-action pairs in DS,clean in time step h. Inequality (a) follows that DS,clean

h ⊆ DS,1
h

since DS,clean is collected by the expert policy. Taking expectation over the randomness in DE and DS,clean on both sides
yields that

EDE,DS,clean

[
V (πE)− V (πISW-BC)

]
≤ H

H∑
h=1

∑
s∈S

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

)
.

Notice that both DE and DS,clean are collected by the expert policy. Then if |DE|+ |DS,clean| ≥ 1, we can calculate that for
each (s, h) ∈ S × [H],

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

)
= dπ

E

h (s)
(
1− dπ

E

h (s)
)|DE|+|DS,clean|

≤ 4

9(|DE|+ |DS,clean|) ,

where the last inequality follows Lemma 5. If |DE|+ |DS,clean| = 0, we directly have that

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

)
≤ 1 =

1

max{|DE|+ |DS,clean|, 1} .

We unify the above two inequalities and get that

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

)
≤ 1

max{|DE|+ |DS,clean|, 1} .

Now we proceed to upper bound the imitation gap.

EDE,DS,clean

[
V (πE)− V (πISW-BC)

]
≤ H

H∑
h=1

∑
s∈S

dπ
E

h (s)P
(
(s, πE

h (s)) /∈ DE
h ∪ DS,clean

h

)
≤ |S|H2

max{|DE|+ |DS,clean|, 1} .

Note that |DE|+ |DS,clean| ∼ Bin(Ntot, η + (1− η)η′). Taking expectation with respect to |DE|+ |DS,clean| yields that

E
[
V (πE)− V (πISW-BC)

]
≤ E

[ |S|H2

max{|DE|+ |DS,clean|, 1}

]
≤ E

[
2|S|H2

|DE|+ |DS,clean|+ 1

]
(a)

≤ 2|S|H2

Ntot(η + (1− η)η′)

=
2|S|H2

NE + η′NS
.

Inequality (a) follows Lemma 3. We finish the proof.

F. Technical Lemmas
Lemma 3. For any N ∈ N+ and p ∈ (0, 1), if the random variable X follows the binomial distribution, i.e., X ∼ Bin(N, p),
then we have that

E
[

1

X + 1

]
≤ 1

Np
.
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Proof.

E
[

1

X + 1

]
=

N∑
x=0

(
1

x+ 1

)
N !

x!(N − x)!
px(1− p)N−x

=
1

(N + 1)p

N+1∑
x=1

(
(N + 1)!

x!(N + 1− x)!

)
px(1− p)N+1−x

=
1

(N + 1)p

(
1− (1− p)N+1

)
≤ 1

Np
.

Lemma 4 (Binomial concentration (Lemma A.1 in (Xie et al., 2021))). For any N ∈ N+ and p ∈ (0, 1), suppose
X ∼ Bin(N, p). Then with probability at least 1− δ, we have

p

max{X, 1} ≤
8 log(1/δ)

N
.

Lemma 5. For any N ∈ N+ and x ∈ [0, 1], consider the function f(x) := x(1− x)N , then we have

∀x ∈ [0, 1], f(x) ≤ 4

9N
.

Proof. We calculate that f ′(x) = (1 − x)N−1(1 − (N + 1)x). It is direct to have that f(x) achieves its maximum at
x⋆ = 1/(N + 1). Furthermore, we have

f(
1

N + 1
) =

1

N

(
1− 1

N + 1

)N+1 (a)

≤ 1

eN
≤ 4

9N
.

Inequality (a) follows that (1 + x/N)N ≤ exp(x), ∀N ≥ 1, |x| ≤ N . We complete the proof.

G. Experiments Details and Additional Results
G.1. Experiment Details

In this section, we present the experiment details to facilitate the replication of our results. Our codebase will be made
available for public access at a later stage. The experiments are conducted on a machine comprising 48 CPU cores and 4
V100 GPU cores. We repeat each experiment 5 times using different random seeds (2021, 2022, 2023, 2024, and 2025).

G.1.1. LOCOMOTION CONTROL

In this study, we evaluate the performance of various imitation learning algorithms on four locomotion control tasks from
the MuJoCo suite: Ant-v2, HalfCheetah-v2, Hopper-v2, and Walker2d-v2. These tasks are widely used in the
literature and are considered challenging benchmarks.

To train the expert policy, we use the online Soft Actor-Critic (SAC) algorithm (Haarnoja et al., 2018) with 1 million
training steps. We implement the algorithm using the rlkit codebase, which is available at https://github.com/
rail-berkeley/rlkit. The training curves of the online SAC agent are shown in Figure 5. We treat the resulting
policy as the expert policy and use it to generate expert trajectories.
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Figure 5. Training curves of online SAC on 4 locomotion control environments.

https://github.com/rail-berkeley/rlkit
https://github.com/rail-berkeley/rlkit


How to Improve Imitation Learning Performance with Sub-optimal Supplementary Data?

In our experimental setup, we utilize an expert dataset comprising of 1 expert trajectory collected by the trained SAC agent.
Additionally, all algorithms are provided with a supplementary dataset. There are two setting of the supplementary data.

• Full Replay. The supplementary dataset is obtained from the replay buffer of the online SAC agent, which has
over one million samples, equivalent to 1000+ trajectories. The rapid convergence of online SAC, as illustrated in
Figure 5, implies that the replay buffer is enriched with a substantial number of expert-level trajectories. As a result,
we expect that utilizing the supplementary data without any modification may lead to desirable results.

• Noisy Expert. The supplementary dataset comprises of 10 clean expert trajectories and 5 noisy expert trajectories.
In this case, we replace the action labels in the noisy trajectories with random actions drawn from [−1, 1]. This
replacement creates noisy action labels for the expert states, leading to a significant distribution shift at the state-action
level, as noted in Remark 1. The high degree of distribution shift makes it challenging for using the supplementary data.

We use a 2-hidden-layer multi-layer perceptron (MLP) with hidden size 256 and ReLU activation for all algorithms, as the
state information in locomotion control tasks is informative by design. The codebase of DemoDICE is based on the original
authors’ work, which can be accessed at https://github.com/KAIST-AILab/imitation-dice. For DWBC,
we also use the authors’ codebase, which is available at https://github.com/ryanxhr/DWBC. We experimented
with different hyper-parameters for both algorithms but found that the default parameters provided by the authors work well.
We normalize state observations in the dataset before training all algorithms, following (Kim et al., 2022b). This is crucial
for achieving satisfactory performance.

In training the discriminator of ISW-BC, we use the gradient penalty (GP) regularization, as recommended by (Kim et al.,
2022b). We add the following loss to the original loss (4) to enforce 1-Lipschitz continuity:

min
θ

∑
(s,a)∈B

(∥g(s, a; θ)∥ − 1)
2
,

where g is the gradient of the discriminator c(s, a; θ), and B is a mini-batch. This promotes the learning of smooth features
and can improve generalization performance.

In our implementation of ISW-BC, we employ 2-hidden-layer MLPs with 256 hidden units and ReLU activation for both
the discriminator and policy networks. We use a batch size of 256 and Adam optimizer with a learning rate of 0.0003 for
training both networks. The training objective is to maximize the log-likelihood. We set δ to 0 and use a gradient penalty
coefficient of 8 by default, unless otherwise stated. The training process is carried out for 1 million iterations. We evaluate
the performance every 10k iterations with 10 episodes. The normalized score in the last column of Table 2 is computed in
the following way:

Normalized score =
Expert performance− Agent performance

Expert performance− Random policy performance
. (21)

G.1.2. ATARI GAMES

We evaluate algorithms on a set of 5 Atari games from the standard benchmark: Alien, MsPacman, Phoenix, Qbert,
and SpaceInvaders. We preprocess the game environments using a standard set of procedures, including sticky
actions with a probability of 0.25, grayscaling, downsampling to an image size of [84, 84], and stacking frames of 4.
These procedures follow the instructions provided by the dopamine codebase, which is available at https://github.
com/google/dopamine/blob/master/dopamine/discrete_domains/atari_lib.py. The final image
inputs are of shape (84, 84, 4).

We use the replay buffer data from an online DQN agent, which is publicly available at https://console.cloud.
google.com/storage/browser/atari-replay-datasets, thanks to the work of (Agarwal et al., 2020b).
The dataset consists of 200 million frames, divided into 50 indexed buckets (ranging from 0 to 49). However, using the
entire dataset is computationally infeasible4 and unnecessary for our task. Therefore, we select specific buffer buckets for
imitation learning.

We choose the expert data from bucket index 49, using only the first 400K frames for training. This makes the task challenging
(we find that BC performs well with 1M frames of expert data). For the full replay setting, we select supplementary data

4Loading 200M frames requires over 500GB memory.

https://github.com/KAIST-AILab/imitation-dice
https://github.com/ryanxhr/DWBC
https://github.com/google/dopamine/blob/master/dopamine/discrete_domains/atari_lib.py
https://github.com/google/dopamine/blob/master/dopamine/discrete_domains/atari_lib.py
https://console.cloud.google.com/storage/browser/atari-replay-datasets
https://console.cloud.google.com/storage/browser/atari-replay-datasets
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from buffer indices 45 to 48, using the first 400K frames from each bucket. This yields a supplementary dataset that is 4
times larger than the expert data. In the noisy task setting, we follow the same procedure for selecting supplementary data,
but replace the action labels with random labels on buffer index 45.

All agents employ the same convolutional neural network (CNN) architecture as the DQN agent, consisting of three
convolutional blocks. The first block applies a filter size of 8, a stride of 4, and has a channel size of 32. The second block
uses a filter size of 4, a stride of 4, and a channel size of 64, while the third block applies a filter size of 3, a stride of 4, and
has a channel size of 64. All blocks use the ReLU activation function. The feature representations are flattened to a vector,
on which a 1-hidden-layer MLP with a hidden size of 512 and ReLU activation function is applied. Finally, the outputs are
passed through a softmax function to obtain a probability distribution.

Atari games are not considered in (Kim et al., 2022b; Xu et al., 2022a) and public implementations of DemoDICE and DWBC
for Atari games are not available. To use these methods in the Atari environment, we extend their original implementation
by replacing the MLP used in locomotion control with the CNN described earlier. Implementing ISW-BC is a little more
complicated. We use the same CNN policy network as in the other methods, but find that directly training the discriminator
from scratch is less effective. This is because the discriminator tends to focus on irrelevant background information instead
of the decision-centric part. To overcome this issue, we build the discriminator upon the feature extractor of the policy
network, leveraging its ability to extract useful information. The discriminator is an MLP with ReLU activation and a
hidden size of 1024: the image feature representation has a dimension 512 and the action feature representation also has
a dimension 512 (we randomly project one-hot discrete actions to a 512-dimension space). We find that the depth of the
MLP is crucial for performance, using a depth of 1 for the full replay setting and 3 for the noisy expert setting. We clip the
importance sampling ratio for numerical stability, using a minimum value of 0 and a maximum value of 5 for the full replay
setting, and a minimum value of 0.2 and a maximum value of 5 for the noisy expert setting. We provide ablation studies of
these hyperparameters in Appendix G.3.1.

All methods were optimized using the Adam optimizer with a learning rate of 0.00025 and a batch size of 256. The training
objective is to maximize the log-likelihood. The training process consisted of 200K gradient steps. Every 2K gradient steps,
the algorithms were evaluated by running 10 episodes and computing the raw game scores. The normalized score in the last
column of Table 3 is computed by Equation (21).

G.1.3. OBJECT RECOGNITION

We utilize the publicly available DomainNet dataset (Peng et al., 2019) for our experiments, which can be accessed at
http://csr.bu.edu/ftp/visda/2019/multi-source. This dataset comprises six sub-datasets: clipart,
infograph, painting, quickdraw, real, and sketch, with 2103, 2626, 2472, 4000, 4864, and 2213 images, re-
spectively. Our task involves recognizing objects from 10 different classes: bird, feather, headphones, ice cream,
teapot, tiger, whale, windmill, wine glass, and zebra. We divided the images into training and test sets, with
80% for training and 20% for testing.

We employ a 2-hidden-layer neural network with a hidden size of 512 and ReLU activation as the classifier. To extract
features from images, we utilize the pretrained ResNet-18 model (trained on ImageNet), which has a feature dimension
of 512. The ResNet-18 model can be accessed at https://pytorch.org/vision/main/models/generated/
torchvision.models.resnet18.html. We opted for this approach as training such a large convolutional neural
network directly on the DomainNet dataset proved to be ineffective. The training objective is to minimize the cross-entropy
loss. To optimize the network parameters, we use the stochastic gradient descent (SGD) optimizer with a learning rate of
0.01 and momentum of 0.9. Additionally, we apply weight decay with a coefficient of 0.0005. The models are trained for
100 epochs with a batch size of 100, following the standard practice.

The discriminators used in ISW-BC and DWBC are implemented as 2-hidden-layer neural networks with ReLU activation.
It’s important to note that these discriminators take both the image and label as inputs. The image input is processed by the
pre-trained and fixed ResNet-18, while the label input is projected to the same dimension (512) by a random projection
matrix. The hidden size for the discriminator is set to 1024 for ISW-BC and 1025 for DWBC, as the discriminator in DWBC
also takes the log-likelihood as an input. For ISW-BC, the discriminator is trained independently for 100 epochs with the
same optimization configuration as the classifier. Afterward, the discriminator is fixed, and its output is used to compute the
importance sampling ratio, which is then used to train the classifier.

http://csr.bu.edu/ftp/visda/2019/multi-source
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html
https://pytorch.org/vision/main/models/generated/torchvision.models.resnet18.html
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G.2. Additional Results

G.3. Training Curves

Training curves. The training curves on the MuJoco locomotion control tasks are displayed in Figure 6 and Figure 7. The
training curves on Atari games are displayed in Figure 8 and Figure 9. The training curves on the object recognition task are
displayed in Figure 10.
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Figure 6. Training curves of algorithms on the locomotion control task with the full replay setting. Solid lines correspond to the mean
performance and shaded regions correspond to the 95% confidence interval. Same as other figures.

G.3.1. ABLATION STUDY

In this section, we present ablation studies conducted on Atari games, aiming to provide insights into the underlying
working scheme of our method. We specifically emphasize Atari games due to their high-dimensional image inputs, making
these tasks particularly challenging. In contrast, the other two tasks, locomotion control and object recognition, involve
informative vector inputs, setting them apart from the unique characteristics of Atari games.

Ablation Study on Feature Representations of Discriminator Network. Our study reveals that employing a separate
CNN for the discriminator yields inferior results compared to utilizing the feature extractor of the policy network. Please
refer to Figure 11. Our conjecture is that training the discriminator independently may cause it to fit noise information (e.g.,
background). In contrast, the policy CNN network is capable of learning decision-centric information, enabling an effective
approach to building the discriminator network through the feature extractor of the policy network.

Ablation Study on Depth of Discriminator Network. We have discovered that the number of discriminator layers plays a
crucial role in the performance of Atari games. The training curves, depicted in both Figure 12 and Figure 13, illustrate the
performance variation based on the number of layers in the discriminator network. Notably, a 1-hidden-layer neural network
yields the best results for the full replay setting, while a 3-hidden-layer neural network performs optimally in the noisy
expert setting. It is important to note that this phenomenon is specific to Atari games. We do not have a good explanation
yet. We believe this deserves further investigation in the future work.
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Figure 7. Training curves of algorithms on the locomotion control task with the noisy expert setting.
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Figure 8. Training curves of algorithms on the Atari games with the full replay setting.
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Figure 9. Training curves of algorithms on the Atari games with the noisy expert setting.
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Figure 10. Training curves of algorithms on the object recognition task using the DomainNet dataset.
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Figure 11. Training curves of ISW-BC on the Atari games in the full replay setting. We test the performance with different feature
extractors of the discriminator.
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Figure 12. Training curves of ISW-BC on the Atari games in the full replay setting. We test the performance with different number of
layers for the discriminator network.
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Figure 13. Training curves of ISW-BC on the Atari games with the noisy expert setting. We test the performance with different number of
layers for the discriminator network.
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